

113. - 114. Jahresbericht des Sonnblick-Vereines für die Jahre 2015 - 2016 113. - 114. Jahresbericht des Sonnblick-Vereines für die Jahre 2015 - 2016

Eigenverlag des Sonnblick-Vereines, Wien 2017

Redaktion: Ingeborg Auer Graphik, Layout: Petra Mayer

Inhalt

E. Ludewig:
Von der Antarktis zum Sonnblick
I. Beck:
Umweltforschungsstation Schneefernerhaus – Deutschlands höchstgelegene
Forschungsstation
J. Mayer:
Gletschermonitoring am Sonnblick mit Sentinel-1 Daten
D. Binder:
Gletscherlängenmessungen in der Goldberggruppe
im Gletscherhaushaltsjahr 2014/2015 und 2015/2016
Vereinsnachrichten und Tätigkeitsbericht,
Wissenschaftsberichte 2014.
Vereinsnachrichten und Tätigkeitsbericht,
Wissenschaftsberichte 2015.
P. Mayer:
Messergebnisse 2014/2015 und 2015/2016 im Sonnblickgebiet

VON DER ANTARKTIS ZUM SONNBLICK

Dr. Elke Ludewig Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Salzburg

Es ist schon faszinierend welche Anstrengungen die Menschheit auf sich nimmt um an exponierten Orten rund um die Uhr Daten zu sammeln und Forschung zu betreiben. Ein Observatorium in der Eiswüste, das neun Monate vom Rest der Welt abgeschnitten ist oder auf einem Berg in 3106 m Höhe, das man zu Fuß nur durch einen 5 Stunden Marsch durch hochalpines Gelände erreicht. Gerade solche Observatorien sind für uns von unschätzbaren Wert. Die dort gewonnen Informationen und Erkenntnisse in Zusammenarbeit mit vielen anderen Forschungseinrichtungen weltweit helfen über Generationen hinweg Maßnahmen zu ergreifen um unser Dasein auf einen lebenswerten Standard zu erhalten. Als einfaches Beispiel dafür kann man hier die Entdeckung des Ozonlochs in der Antarktis und die Reaktionen darauf aufzählen. Dank wissenschaftlichen Ausführungen, die in politischen Maßnahmen endeten, konnte die Weltmeteorologische Organisation (WMO) sich 2015 positiv über die Entwicklung der Ozonschicht, zu Gunsten der menschlichen Gesundheit, äußern (Secretary-General's Message for 2015).

Es ist ein Privileg an solchen Orten zu arbeiten, im Dienste der Menschheit sozusagen. Ich hatte die Ehre an der Neumayer-Station III in der Antarktis zu arbeiten und zu leben – und nun, von der Antarktis zum Sonnblick, wurde ich mit der Leitung des Sonnblick Observatoriums betraut. Hier darf ich nun von meinen Erfahrungen berichten und einen Einblick in zwei spannende Forschungsstätten geben.

DIE NEUMAYER-STATION III

Abbildung links: Foto@AWI_E.Ludewig: Neumayer-Station III, Antarktis
Abbildung rechts: Grafik@AWI: (1) Fundament (2) Fahrzeughalle/Schneegarage (3) Energie-versorgung (4)
Ballonfüllhalle für Wetterballone (5) Eingang/Treppenhaus (6) Wohn-u. Arbeitsräume (7) Schneeschmelze (8)
Zufahrt/Rampe

Die Neumayer-Station III ist eine deutsche Polarforschungsstation des Alfred-Wegener-Instituts (AWI), welche auf dem Ekström-Schelfeis, nahe der Atka-Bucht gelegen ist. Seit 2009 ist diese Station im Betrieb und löste die nahe gelegene Station Georg von Neumayer ab. Die Station ist ein langer Kasten, der auf 16 hydraulischen Stützen steht, 30 Meter hoch, 68 m lang, 24 m breit ist und 8 m in die Tiefe geht. Die Neumayer-Station III ist eine Forschungsstation und beherbergt drei Observatorien: das geophysikalische, luftchemische und meteorologische Observatorium. Die Station ist Ausgangspunkt für zahlreiche Forschungsprojekte und logistischer Drehpunkt in der Antarktis. Die Observatorien werden das ganze Jahr rund um die Uhr betrieben. Ein Team, bestehend aus neun Personen, wird jedes Jahr erneut ausgewählt um 14 Monate die Neumayer-Station III, kurz NM-III, zu betreiben. Diese Personen nennt man Überwinterer. Der wissenschaftliche Teil des Teams besteht aus vier Personen, spezifiziert für den Fachbereich Meteorologie, Luftchemie und Geophysik. Der technische Teil des Teams setzt sich aus einem Ingenieur/In, einem Elektriker/In, einer IT-Fachkraft für EDV und Funk zusammen. Zusätzlich stellt das AWI noch einen Koch/In und einen Arzt/In ein. Die Bewerbung verläuft klassisch schriftlich mit Einladung zu einem Interview, gefolgt von einem medizinischen Check. Ist man nach diesem

Auswahlverfahren der oder die Erstgereihte wird man auf Probe eingestellt. Daraufhin trifft sich das Team zum ersten Mal Anfang August und durchlebt eine spannende und lehrreiche Vorbereitungszeit.

DIE VORBEREITUNGSZEIT:

Wichtige Stationen während der Vorbereitungszeit sind der sogenannte "Bergkurs" und der "Brandschutzkurs". Hier trainiert das Team den Umgang mit Eis und Schnee, die Bergung von Personen aus Gletscherspalten und wird bei der Marine zu einem Löschtrupp ausgebildet um im Ernstfall schnell reagieren zu können. Daneben gibt es zahlreiche spezifische Trainingseinheiten und Lehrgänge mit den Themen Technik, Messgeräte, EDV, Medizin, Sicherheit, etc. Mit diesen Kursen versucht man die Überwinterer auf die Gegebenheiten vor Ort gut vorzubereiten. Während dieser Zeit werden auch Zargeskisten mit Habseligkeiten gepackt, die per Schiff zur Neumayer-Station III transportiert werden. Zusätzlich verfügt das AWI über das größte Polarkleidungslager in Europa. Jeder Überwinterer wird hier mit dicken Daunenjacken, speziellen Schuhen, Handschuhen, Masken, Brillen, Skianzügen und Hosen ausgestattet. Kleidung, die einen bei Temperaturen unter -30 °C warm halten.

Abbildung links: Foto@AWI_E.Ludewig: Gletscher-Bergungstraining nahe Hochwildehaus, Ötztal Abbildung rechts: Foto@AWI_A.Leonhardt: Brandschutzkurs in Neustadt, Deutschland

Foto@AWI_A.Sticher: Auswahl an Polarkleidung

DIE ANREISE IN DIE ANTARKTIS

Foto@E.Ludewig: Transportflieger Illusion in Kapstadt, kurz vor dem Start in die Antarktis, Dez.2014

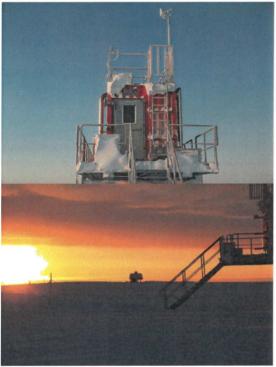
Wie erreicht man die Neumayer-Station III? Der klassische Weg ist die Nutzung der Polarstern, die einmal im Jahr am Ekströmschelfeis anlegt und die Station mit Gütern (Proviant, Ersatzteile, neue Geräte) versorgt. Da auf der Polarstern die Plätze aber für Forscher benötigt werden, die aktiv während der Überfahrt Projekte verfolgen, fliegt man heute die neun Überwinterer per Flugzeug in die Antarktis ein. In Kapstadt checkt man ganz normal am Flughafen für den Überflug in die Antarktis ein. Jeder Passagier hat ein extra Handreisegepäck, indem dicke Polarkleidung verstaut ist, die man im Flugzeug vor der Landung anzieht. Von Kapstadt aus geht es mit einer Transportmaschine des Typs Illusion zur russischen Station Nowolasarewskaja. Dort kann das Transportflugzeug auf einer präparierten Eispiste landen. Da die meisten Stationen nicht über eine solche Eislandebahn verfügen, setzt man von hier seine Reise in einer kleinen Propellermaschine, meist vom Typ DC3 oder Twinotter fort. Diese Maschinen können auch in der antarktischen Wildnis landen.

Der Anflug auf die Neumayer-Station III wirkte surreal. Eine weite weiße Eislandschaft in der ein Bauwerk mit rot-blauen Farbelementen stand und den einzigen Kontrast bildete. Mein Überwinterungsteam landete am Morgen des 19. Dezembers 2014 an der Neumayer-Station, im Polarsommer, eine Zeit in der die Sonne nicht untergeht. Schnell wurde man in den Arbeitsalltag mit einbezogen. Wer gerne mehr darüber wissen möchte was im Alltag auf der Neumayer-Station III passiert, kann über den Helmholtz Gemeinschaft Blog "AtkaXpress" (https://blogs.helmholtz.de/atkaxpress/) mehr Details erfahren.

In der Sommersaison, die meist von Ende November bis Mitte Februar andauert, herrscht ein reges Treiben auf der Station. Die Überwinterer weisen ihre Nachfolger an, ein sogenanntes "Bauteam" überprüft die Technik, die Maschinen werden alle gewartet, die Güter, die mit der Polarstern oder den Fliegern ankommen müssen verteilt und deren eventueller Weitertransport zu anderen Stationen organisiert werden und zusätzlich sind Forschungsgruppen vor Ort. Taucher nehmen Proben unter dem Meereis, ROVs (Remotely operated vehicle) sind im Wasser im Einsatz, Robben und Vögel werden untersucht, aber auch Equipments wird getestet, wie z.B. neue Eisbohrer. Und die Messflugzeuge Polar 5 und Polar 6 führen Messkampagnen durch. Dementsprechend herrscht im Sommer ein regelrechter Trubel auf der Station und man hilft und packt an wo man kann um einen reibungslosen Ablauf zu gewährleisten. Im Sommer bestehen auch die Möglichkeiten Außenstationen zu warten bzw. zu errichten. Dies betrifft vor allem seismische Stationen oder Wetterstationen. Im antarktischen Sommer 2015 durfte ich am Olymp, eine Erhebung, die ca. 150 km südwestlich der Neumayer-Station III auf dem antarktischen Festland steht, eine automatische Wetterstation errichten, die den Winter über an NM-III getestet, programmiert und für die "Auswilderung" vorbereitet wurde.



Foto@AWI E.Ludewig: Automatische Wetterstation. Aufbau am Olymp, Antarktis, WMO# 89011


DIE ÜBERWINTERUNGSZEIT

Im Gegensatz zur Sommersaison ist die Winterzeit weniger hektisch, weil mit Mitte Februar die letzten Sommergäste die Station verlassen und das neunköpfige Überwinterungsteam zurück lässt. Ab hier ist das Team für neun Monate auf sich allein gestellt. Die Tage werden schnell immer kürzer, die Kaiserpinguine in der nahegelegenen Atkabucht rutschen immer näher zusammen und mit der Polarnacht werden die Polarlichter sichtbar und wunderschöne Sternenhimmel laden zum Staunen ein. Doch wir hatten auch sehr stürmische Tage mit Windspitzen bis zu 92 Knoten (170 km/h), an denen ein Vorankommen im Schneesturm kaum noch möglich war und man Bange auf die Datenerfassung starrt und hofft, dass das Messfeld nicht davon fliegt. Die Tiefsttemperatur in 2015 lag bei -49,8°C, die maximale Temperatur bei 0,1°C. Als Meteorologe war ich bei jedem Wetter draußen. Alle drei Stunden von 05:00 Uhr früh bis kurz nach Mitternacht führte ich eine Wetterbeobachtung durch. Im Rahmen der Wetterbeobachtung wurde auch die Schneedrift gemessen. Da die Station die Schneedrift in der Umgebung beeinflusst, musst man sich mehrere hundert Meter von der Station entfernen um die natürliche Schneedrift zu erfassen. Aus sicherheitstechnischen Gründen musste man beim Verlassen der Station immer ein Handfunkgerät, sowie ein GPS-Gerät mit sich führen. So kann man im Notfall immer Kontakt zur Station aufnehmen, denn in der Antarktis kann es schnell passieren, dass der "Whiteout-Effekt" eintritt. In diesem Fall erkennt man vor lauter Weiß keine Kontraste mehr und verliert schnell die Orientierung. Erstaunlich war wie schnell sich der eigene Körper an die neuen Bedingungen gewöhnte, sich der Kälte anpasste. Im Sturm hörte ich neben dem Toben des Windes schnell das Flattern der Flaggen und Handleine und surren des Wettermastes heraus, was der Orientierung half.

Das meteorologische Observatorium ist eine bedeutende Einrichtung auf der Neumayer-Station. Ein Messfeld mit einem ca. 15m hohen Wettermast und der BSRN-Strahlungsstation (BSRN=Basic Surface Radiation Network) muss mehrmals täglich kontrolliert werden. Hier werden die wichtigsten meteorologischen Parameter erfasst. Als Meteorologe hat man auf NM-III die Verantwortung das Team über Wetteränderungen zu informieren um bei Schlechtwetter Außenaktivitäten einzuschränken und mit dem Team auch den Wasservorrat zu kalkulieren. Bei stürmischen Perioden von über 4 Tagen, wenn man nicht die Schneeschmelze für die Wasserversorgung füllen kann, muss man sich schon einmal einschränken. Hierfür wird täglich eine Stationsvorhersage erstellt. Im Sommer sind die Wetterinformationen und Analysen auch für die Flugmeteorologie essentiell. Täglich wird neben den Wetterbeobachtungen eine Radiosonde (Wetterballon) gestartet, wie einmal wöchentlich eine Ozonsonde. Ozonsondenaufstiege können während der Ozonlochzeit von August bis Dezember fast alle zwei Tage gestartet werden. Daneben wartet und repariert man Geräte, wertet Daten aus und validiert diese, sorgt dafür, dass die Informationen in die Welt gelangen und interpretiert die Satellitenbilder, die vor Ort empfangen werden können. Zusätzlich hilft man im Spurenstoffobservatorium, wie auch im geophysikalischen Observatorium und beim restlichen Stationsbetrieb. Eine gute Aufgabeteilung (Putzdienste, Küchendienste) war hier für uns wichtig. Arbeiten im Spurenstoffobservatorium, welches 1,5 km südlich der Station liegt, erfordert einen Hörschutz. Hier saugen Pumpen die Luft in die Messgeräte und Filter. Die Entfernung ist nötig um Verschmutzungen der Luft durch den Stationsbetrieb (Fahrzeuge) zu vermeiden. An der Neumayer-Station ist sehr reine Luft vorhanden, weshalb die Daten als Referenz betrachtet werden. Da ist es dann umso spannender wenn das Meereis aufbricht und man erhöhtes Bodenozon messen kann. Nahe der Spuso gibt es eine Luke mit einer Treppe, die derzeit ca. 16 m in die Tiefe führt. Hier, geschützt unter einer dicken Schneedecke, befindet sich das "Magnetische Observatorium" der Geopyhsik. Neben seismischen Stationen in der Gegend überwacht das Geophysikalische Observatorium auch die Funktion des im Westen der Neumayer-Station installierten Infraschall Array 127DE. Diese Station der deutschen BGR (Bundesanstalt für Geowissenschaften und Rohstoffe) dient der Überwachung des Kernwaffentest-Stopp-Abkommen (CTBT) und nimmt über Druckschwankungen Explosionen in der Luft war.

<u>Foto@AWI E.Ludewig</u>: Meteorologisches Messfeld in der Polarnacht und Polartag. Check der Messinstrumente.

Foto@AWI_E.Ludewig: Spurenstoffobservatorium (SPUSO) 1,5km südlich der Neumayer-Station.

<u>Foto@AWI_A.Leonhardt</u>: E. Ludewig auf dem Meereis während einer Meereismessung für das Projekt AFIN.

Zum Bereich Meteorologie zählen auch die Überwachung von Schneehöhenmessungen und die Durchführung von Meereismessungen. In regelmäßigen Abständen (mindestens einmal pro Monat) ging es mit Eisbohr-Equipment und Skidoo in einem Team von drei bis vier Personen raus aufs Meereis. An bestimmten Punkten wurden Schneelöcher bis zum Meereis gegraben und dann durch das Meereis, welches bei uns an manchen Stellen bis zu 8m maß, faustgroße Löcher gebohrt. Schneehöhe, Eisdicken, Temperaturen und Beschaffenheit wurden erfasst. Diese Messungen für das Projekt AFIN (Antarctic Fast Ice Netowrk) mussten gut geplant werden, weil man teilweise bis zu 12 Stunden unterwegs war und während dieser Zeit die Arbeiten auf der Station neu verteilt werden mussten. Sicherheit spielt hier eine wichtige Rolle. Gerade in den kalten Wintertagen galt es seine Teammitglieder im Freien im Auge zu behalten, auf Flüssigkeitsaufnahme und Erfrierungen und bei Fahrten über das Meereis auf Risse und Eisbewegungen zu achten.

Oft werden Überwinterer gefragt ob einem vor Ort nicht langweilig wird, so abgeschnitten vom Rest der Welt. Dies kann ich mit einem klaren NEIN beantworten. Der Tag ist gut mit Arbeit ausgefüllt und die Natur ist jeden Tag anders faszinierend. Verstärkt im Winter ziehen Eisberge vorbei, die man vom Weiten sehen kann, fantastische meteorologische Erscheinungen, wie Halos und Wolkenformationen, Schneedriftbewegungen und Spiegelungen lassen die karge Landschaft abwechslungsreich erscheinen. Das Jahr über konnten wir die Pinguinkolonie in der Atka-Bucht beobachten, Weddellrobben, Skuas und andere Vögel. In der Station selbst gibt es Sportmöglichkeiten, eine Vielzahl von Gesellschaftsspielen, eine große Mediathek, Bibliothek und Möglichkeiten zum Musizieren. Als Team feierten wir besondere Anlässe wie Geburtstage, Mittwinter im Juni, den ersten Sonnenaufgang, Halbzeit, das Antarctic Film Festival und ähnliche Tage. Unser Koch verköstigte uns sehr gut, dennoch konnten wir gegen Ende November 2015 den ersten Flieger mit frischem Obst und Gemüse kaum erwarten. So schön die kalten Nächte im Winter auch waren, wartet man gespannt auf die ersten Sonnenstrahlen. Lange schon erahnt man am Horizont das Sonnenlicht und die Dämmerung überwiegt nach und nach die Nacht, bis man dann endlich die Sonne am Horizont auftauchen sieht. Mit den ersten Sonnenstrahlen konnten wir auch einen genauen Blick auf den Pinguinnachwuchs werfen und deren hohen Piepstönen lauschen. Eine willkommene Abwechslung zum Gekreische der alten Tiere.

Abbildung links: kleine Kaiserpinguine

Abbildung rechts: erwachsener Pinguin: Mauser (Foto@AWI_E.Ludewig)

VON DER ANTARKTIS ZUM SONNBLICK

Mit Ende der Wintersaison kehrt der Trubel auf der Station zurück und mit jedem Flieger kommen neue Sommergäste, die forschen und an der Station arbeiten. Bei den Überwinterern kommen gemischte Gefühle auf, einerseits Wehmut, weil man bald diesen fantastischen Ort verlässt, andererseits Freude auf die Heimat, Familie und Freunde. In dieser Zeit verschickte ich meine Bewerbung für das Sonnblick Observatorium und kaum wieder in Europa angekommen, ging es gleich zum Bewerbungsgespräch nach Wien. Im Mai 2016 konnte ich mich in diese neue Aufgabe stürzen.

Die Zeit auf der Neumayer-Station III war eine sehr lehrreiche und faszinierende Erfahrung und wie viele Österreicher auch schon vor mir, möchte auch ich diese Erfahrung nicht missen, die mich gut auf meine Aufgaben für das Sonnblick Observatorium vorbereitete.

Das Sonnblick Observatorium:

Das Sonnblick Observatorium zählt zu den wichtigsten Forschungseinrichtungen Österreichs. Seit 130 Jahren wird am Hohen Sonnblick am Ende des Rauriser Tales, an der Grenze zwischen den Bundesländern Kärnten und Salzburg, gemessen und beobachtet. Im Jahre 1886 wurde das Observatorium danke eines gut ausgeprägten österreichischen Pioniergeistes am Hohen Sonnblick in 3106m erbaut. Wer hätte vor 130 Jahren gedacht, dass eine Temperaturzeitreihe so bedeutend für die Menschheit sein könnte? Dies ist ein wichtiger Aspekt von Observatorien, dass manche Datensätze nicht sofort Anwendung in der Forschung finden, aber bei Zeiten einen unschätzbaren Wert erlangen.

Besucher:

Heute teilt sich das Sonnblick Observatorium den Gipfel mit der Schutzhütte Zittelhaus der Alpenvereinssektion Rauris. Viele Bergsteiger, die den Sonnblick erklimmen, nutzen die Gelegenheit einer Führung durch das Observatorium, die im Sommer meist abends stattfinden, nach Anmeldung aber auch tagsüber durchgeführt werden können. Besucher sind immer wieder überrascht wie genau wir vor Ort messen können. Jeder Raucher vor Ort beeinflusst deutlich die luftchemischen Messungen. Deshalb bitten wir alle auf das Rauchen am Sonnblick zu verzichten und falls unbedingt nötig nur an dem ausgewiesen Platz vor dem Zittelhaus zu rauchen.

Infrastruktur

Das Sonnblick Observatorium verfügt über zwei wichtige Infrastrukturen, die einen Betrieb erst ermöglichen. Diese sind die Seilbahnanlage und eine Stromleitung, die den Anschluss der Anlage an das allgemeine Stromnetz ermöglicht. Damit sind erst die hochsensiblen Messungen im luftchemischen Bereich möglich, da lokale Emissionen ausgeschlossen werden können. Die Materialseilbahn mit eingeschränktem Personenverkehr erleichtert es den Mitarbeitern das Observatorium zu erreichen.

Personal

Die personelle Zusammensetzung des Sonnblick Observatoriums ist sehr komplex, weil eine Vielzahl von Menschen immer wieder am Sonnblick tätig sind. Das Kernteam umfasst vier Wetterdiensttechniker, zwei Ingenieure und eine Leitung. Für die vier Wetterdiensttechniker ist eine Vertretung im Urlaubs- und Krankheitsfall von drei Personen vorgesehen. Zusätzlich sind weitere Ingenieure, Techniker und Studenten der ZAMG, BOKU, TU-Wien, Umweltbundesamt, AGES, etc. am Sonnblick für den Messbetrieb zuständig.

Netzwerke

Den besonderen internationalen Status des Sonnblick Observatorium kann man anhand an den Mitgliedschaften in internationalen Netzwerken beurteilen. Solche Netzwerke definieren was und wie gemessen wird. Abhängig von der Datenqualität und -quantität, sowie Stationseigenschaften kann eine Forschungsstation/Observatorium in ein solches Netzwerk aufgenommen werden. Damit ist gewährleistet, dass man die Datenwerte unterschiedlicher Orte vergleichen kann und so schnell Besonderheiten und Veränderungen aufzeigen kann. Das Sonnblick Observatorium ist hier in den weltweit wichtigsten Netzwerken, wie NDACC, BSRN, GAW, GCW, GTS vertreten. Der Sonnblick ist aber auch ein wichtiger Standort in den nationalen Messnetzen für Immissionsschutz, Strahlungsschutz, ARAD, etc.

Forschung

Das Konzept für Forschung am Sonnblick ist in dem Programm ENVISON (ENVIronmental Research and Monitoring SONnblick) zusammengefasst. Schwerpunkte sind Forschungen in den Bereich Atmosphäre, Biosphäre und Kryosphäre beheimatet. Aktuelle Aktivitäten am Sonnblick Observatorium werden in einer jährlich erscheinenden Broschüre veröffentlicht. Im Jahr 2017 wird eine neue Webseite übersichtlich aktuelle Daten und Informationen über das Sonnblick Observatorium bereitstellen. Forschungsprojekte und -ideen sind immer willkommen und werden gerne vom Sonnblick-Team unterstützt.

SONNBLICK-VEREIN

Die Zukunft verlangt viele Investitionen um den Status des Observatoriums zu erhalten und auszubauen. Die vorhandene Infrastruktur (Seilbahn, Stromleitung, Kommunikation) muss erneuert werden. Zusätzliche Labore und Arbeitsräume sind zukünftig nötig um weitere Forschungsprojekte zu realisieren. Hierbei sind wir auch auf die Unterstützung des Sonnblick Vereins angewiesen, dessen Mitglieder und Förderer, sowie Spenden. Neue Mitglieder und Förderer sind immer willkommen!

Über den Sonnblick-Verein werden zukünftig auch Forschungsstipendien vergeben. Falls Sie mehr über das Sonnblick Observatorium erfahren möchten, kontaktieren Sie gerne das Sonnblick-Team. Wir sind stets bemüht auf alle Fragen und Interessen einzugehen. Österreich kann stolz auf sein Sonnblick Observatorium sein!

Abbildung rechts: Sonnblick Observatorium im Juni 2016 @BM.I: Flugpolizei Salzburg Abbildung links: Sonnblick-Team im September 2016 (H. Tannerberger fehlt) @ZAMG

Kontakt

Dr. Elke Ludewig Zentralanstalt für Meteorologie und Geodynamik (ZAMG) Freisaalweg 16 5020 Salzburg elke.ludewig@zamg.ac.at http://www.zamg.ac.at

UMWELTFORSCHUNGSSTATION SCHNEEFERNERHAUS – DEUTSCHLANDS HÖCHSTGELEGENE FORSCHUNGSSTATION

Dr. Inga Beck, Michael Bittner, Markus Neumann UFS Schneefernerhaus GmbH, 82475 Zugspitze

DIE BETRIEBSGESELLSCHAFT UMWELTFORSCHUNGS-STATION SCHNEEFERNERHAUS

Das Schneefernerhaus ist seit 1999 auf 2650 m ü. NHN (unterhalb des Zugspitzgipfels) die höchstgelegene Umweltforschungsstation Deutschlands. Derzeit betreiben dort zehn renommierte deutsche Forschungseinrichtungen (siehe unten) permanente Studien und bilden die Konsortialpartner der Station.

Seit 1999 ist die Betriebsgesellschaft Umweltforschungsstation Schneefernerhaus GmbH (kurz "UFS GmbH") für den Betrieb der Station verantwortlich (Geschäftsführer der UFS GmbH ist Herr Markus Neumann). Sie versteht sich als unabhängiger Servicepartner der Wissenschaft und konzentriert sich dabei insbesondere auf das Gebäudemanagement, auf Aspekte der Logistik (z.B. Unterstützung der Wissenschaftler beim Aufbau von Instrumenten und deren Betrieb bzw. deren Wartung; Organisation von Seminaren und Tagungen) sowie auf die Öffentlichkeitsarbeit (z.B. Pressekontakt oder Führungen von Besuchergruppen).

Das Schneefernerhaus verfügt über 15 Übernachtungszimmer (51 Betten) und zwei Küchen zur Selbstversorgung. So können Forscher oder Forschergruppen auch für einen längeren Zeitraum auf der Station bleiben.

FORSCHUNG IN DER UFS – VIRTUELLES INSTITUT UFS

In der Umweltforschungsstation wird unter der Federführung des Bayerischen Staatsministeriums für Umwelt und Verbraucherschutz, BayStMUV, das sogenannte "Virtuelle Institut UFS" geführt, dem folgende zehn Organisationen angehören:

Deutscher Wetterdienst (DWD), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Helmholtz-Zentrum München (HMGU), Karlsruhe Institut für Technologie (KIT), Ludwig-Maximilians-Universität München (LMU), Max-Planck-Gesellschaft (MPG), Technische Universität München (TUM), Umweltbundesamt (UBA), Universität Augsburg (UniA) und der Freistaat Bayern mit seinen nachgeordneten Behörden. Dieses Konsortium hat sich vertraglich über die Nutzung der Forschungsinfrastruktur UFS geeinigt und bei der UFS GmbH langfristig Räumlichkeiten (Labore und Terrassenflächen) für ihre jeweiligen Aktivitäten angemietet. Das Konsortium entscheidet zudem über die langfristige wissenschaftliche Ausrichtung (Strategie) der Aktivitäten in der UFS. Den Vorsitz des Konsortiums führt das BayStMUV (Herr MD Dr. Christian Barth). Jeweils ein Vertreter der dem Konsortium angehörigen Forschungseinrichtungen gehören dem sogenannten UFS-Science Team an. Hier werden wissenschaftliche Aktivitäten aufeinander abgestimmt und gemeinsame F&E-Projekte definiert. Gegenwärtig werden acht Forschungsschwerpunkte bearbeitet:

- 1. Satellitenbeobachtung und Früherkennung
- 2. Regionales Klima und Atmosphäre
- 3. Kosmische Strahlung und Radioaktivität
- 4. Hydrologie
- 5. Umwelt- und Höhenmedizin
- 6. GAW (Global Atmosphere Watch)
- 7. Biosphäre und Geosphäre
- 8. Wolkendynamik

Der wissenschaftliche Koordinator des Science Teams (Prof. Dr. Michael Bittner; DLR, Universität Augsburg) berichtet dem Konsortialrat und informiert insbesondere über den Fortgang der wissenschaftlichen Aktivitäten in der UFS und zum Stand der Umsetzung der vom Konsortialrat beschlossenen wissenschaftlichen Strategie.

VIRTUELLES ALPENOBSERVATORIUM – VAO

Verschiedene alpine Forschungsobservatorien und –Einrichtungen aus Italien, Frankreich, der Schweiz, Norwegen, Slowenien und Deutschland haben sich zu einem sogenannten "Virtuellen Alpenobservatorium" (VAO)" zusammengeschlossen. Der Sonnblick ist als österreichische Forschungsstation im VAO vertreten und forscht hier unter anderem in dem Bereich "Klimawandel und Wasserbilanz in Hochgebirgsregionen". Zu VAO gehören auch das Leibniz-Höchstleitstungsrechenzentrum in Garching (LRZ) sowie das Weltdatenzentrum für Fernerkundung der Atmosphäre (WDC-RSAT) in Oberpfaffenhofen, die beide mit weiteren Partnern das informationstechnische Rückgrat von VAO, das sogenannte Alpine Environmental Data Analysis Center, AlpEnDAC, bilden. AlpEnDAC ermöglicht so den jeweils individuellen Zugriff auf Daten, Informationen und numerische Modelle.

Ziel des VAO ist die Verstärkung einer arbeitsteiligen und auf die Nutzung von Synergiemöglichkeiten abzielenden Kooperation zwischen den jeweiligen Einrichtungen, um die zunehmend komplexer werdenden wissenschaftlichen und technologischen Fragestellungen im Bereich der alpinen Umwelt, die die Installation und den Betrieb zunehmend komplex und kostenintensiv werdender Forschungsinfrastruktur erfordert, effizient beantworten zu können. Auf diese Weise soll der europäischen Wissenschaft die Forschung auf höchstem internationalem Niveau ermöglicht werden. Das Motto von VAO lautet: "Scientific cooperation - joining forces and resources instead of duplicating efforts". VAO bringt die an den jeweiligen Einrichtungen aktiven wissenschaftlichen und technischen Arbeitsgruppen zusammen und unterstützt bei der Durchführung innovativer und herausfordernder F&E-Projekte. Thematische Schwerpunkte sind dabei Atmosphärische Variabilität und Trends, (ii) Alpine Umwelt: Gefahren und Risiken, (iii) Alpiner Wasserhaushalt und (iv) Umwelt und Gesundheit. Zudem soll die Entwicklung von Services unterstützt werden, die wissenschaftliche Erkenntnisse und Fähigkeiten für gesellschaftliche oder wirtschaftliche Bereiche in Wert setzt. Dabei handelt es sich um Informationen, die etwa der Tourismus-, Wasser-, Energie-, Versicherungs- und Gesundheitssektor, aber auch die Politik benötigen.

Abbildung 1: Die Umweltforschungsstation Schneefernerhaus von Süden aus

Abbildung 2: Installierte Messinstrumente auf der UFS (von links nach rechts: ein altes LIDAR/Ceilometer ein alter Niederschlagssammler das DPR Mikrowellengerät der Uni Köln zur Bestimmung des Liquid Water Contents das HATPRO Mikrowellengerät der Uni Köln zur Bestimmung des Liquid Water Contents das alte Wolkenradar)

Kontakt

Dr. Inga Beck Referentin für Kommunikation und Öffentlichkeitsarbeit UFS Schneefernerhaus GmbH Zugspitze 5, D-82475 Zugspitze inga.beck@schneefernerhaus.de http://www.schneefernerhaus.de

GLETSCHERMONITORING AM SONNBLICK MIT SENTINEL-1 DATEN

Johannes Mayer, im Rahmen seiner Bachelorarbeit

ZUSAMMENFASSUNG

Mit dem Sentinel-1 Satellitenprogramm der European Space Agency (ESA) eröffnet sich die Möglichkeit Gletscherbeobachtungen mittels Mikrowellensensoren durchzuführen. Der besondere Vorteil ist jener, dass diese im Gegensatz zu optischen Sensoren nicht von den jeweiligen Wetterverhältnissen abhängig sind. Mikrowellen können Wolken durchdringen weshalb bei jeder Witterung Aufnahmen möglich sind.

Im Rahmen der hier vorgestellten Studie wurden mittels Sentinel-1 Aufnahmen die Veränderungen der Gletscheroberflächen von Goldberg-, Wurten- und Kleinfleißkees im Zeitraum von November 2014 bis August 2015 erarbeitet.

Es zeigt sich dabei, dass mit der verwendeten Methode gut zu detektieren ist, ob zum jeweiligen Aufnahmedatum an der Gletscheroberfläche Schneeschmelzprozesse stattfinden.

DATEN UND METHODIK

Das hier im Mittelpunkt stehende Sentinel-1 Programm wurde mit dem Satellit Sentinel-1A im April 2014 gestartet, ein zweiter Satellit operiert seit dem Frühjahr 2016. Sentinel-1 liefert aus seinem Orbit in 693 km Höhe alle 12 Tage Daten zum Monitoring von Wald, Wasser, Boden oder Eis, sowie für Anwendungen zur Risikoabschätzung hinsichtlich Naturkatastrophen und zum Klimawandel (Nagler et al. 2016).

Der auf Sentinel-1 verwendete Mikrowellensensor ist ein C-Band Synthetic Aperture Radar (SAR) System. Es sendet selbst erzeugte Mikrowellenimpulse mit einer Frequenz von 5,4 GHz aus, die auf die Erdoberfläche treffen, von dort teilweise reflektiert werden und so zur Antenne zurückkehren. Der in Radarbildern aufgezeichnete Wert ist der so genannte Rückstreukoeffizient σ° . Seine Intensität variiert mit der Beschaffenheit der von den Mikrowellen getroffenen Oberflächen. So weisen nasser und trockener Schnee wesentliche Unterschiede in der Intensität des Rückstreukoeffizienten auf. Bei feuchtem Untergrund ist σ° wesentlich geringer, als bei trockenem Schnee, wohingegen sich Eis und trockener Schnee kaum in ihren Rückstreuintensitäten unterscheiden (Ulaby 1977). Diese Unterschiede wurden verwendet um die Schneeschmelze auf den ausgewählten Gletschern zu untersuchen.

CHRONOLOGIE DER SCHNEESCHMELZE VON 1. NOVEMBER 2014 BIS 16. AUGUST 2015

Für den späten Herbst 2014 zeigt sich, dass noch ein gewisser Flüssigwassergehalt auf allen untersuchten Gletschern vorzufinden war. Ein leichter Rückgang ist vom 1. bis 25. November am Goldbergkees beziehungsweise dessen östlichster Fläche festzustellen.

Bis Ende 2014 ist eine weitere Abnahme des Flüssigwassergehaltes festzustellen, die bis nach dem Ende des Hochwinters fortdauert, wie die Graphik vom März zeigt. Zwischen 6. und 18. April 2015 sind schließlich wiederbeginnende Schmelzprozesse ersichtlich. Dieser Phase folgt schließlich mit Mai 2015 die Periode mit den größten Veränderungen an den untersuchten Gletschern. Ein Vergleich zwischen den klassifizierten Bildern vom 18. April und vom 24. Mai zeigt dies deutlich und wird auch von den gegebenen Temperaturdaten unterstützt. In diesem Zeitraum schmilzt der im Winter gefallene Schnee auf dem Gletscher ab und lässt bereits das darunterliegende Eis langsam zum Vorschein kommen.

Für die Sommermonate wird schließlich ein Rückgang der Intensität der Schneeschmelze auf allen drei Gletschern beobachtet. Die allgemeinen Verhältnisse nähern sich wieder dem Zustand des ersten Bildes vom November 2014 an. Zudem zeigt sich ein deutlicher Unterschied zwischen schneebedeckten Bereichen am Gletscher und solchen mit Eis an der Oberfläche.

LITERATUR

Nagler, T., Rott, H., Ripper, E., Bippus, G., Hetzenecker, M. (2016): Advancements for Snowmelt Monitoring by Means of Sentinel-1 SAR. Remote Sensing, 8, 348, S. 1-17.
Ulaby, F. T., Stiles W. H., Dellwig, L. F., Hanson, B. C. (1977): Experiments on the Radar Backscatter of Snow. IEEE Transactions on Geoscience Electronics, 1 (4), S. 185 – 18.

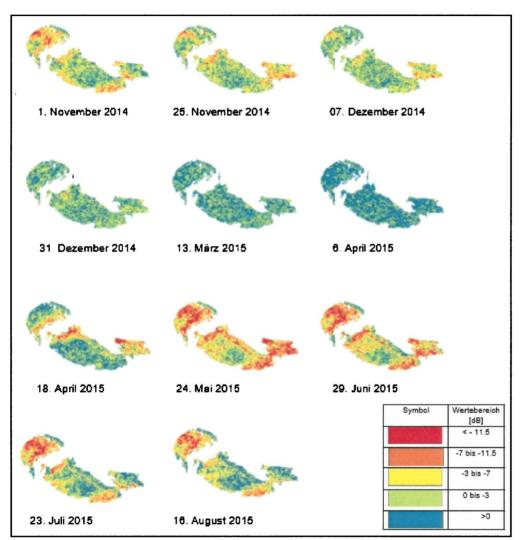


Abbildung 1: Differenzen der Rückstreuwerte des Goldbergkees zu den Aufnahmedaten. Je nativer die Werte desto höher der Flüssigwassergehalt der Schneedecke. Grün und Blau entsprechen trockenem Schnee bzw. Eis an der Oberfläche. Orange und Rot repräsentieren Nassschnee.

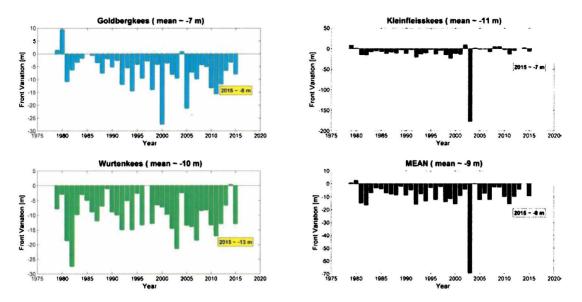
Kontakt

Annett Bartsch Zentralanstalt für Meteorologie und Geodynamik Hohe Warte 38 1190 Wien annett.bartsch@zamg.ac.at http://www.zamg.ac.at

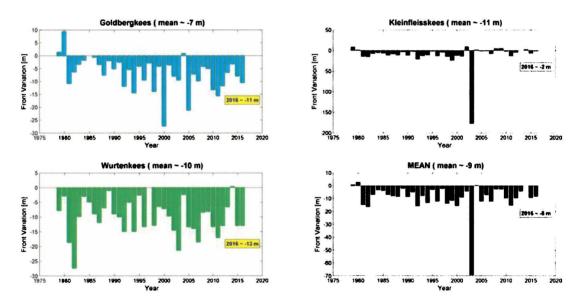
GLETSCHERLÄNGENMESSUNGEN IN DER GOLDBERGGRUPPE IM GLETSCHERHAUSHALTS-JAHR 2014 / 2015 UND 2015 / 2016

D. Binder Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Wien

1. ZUSAMMENFASSUNG


Die Gletscherhaushaltsjahre 2014/15 und 2015/16 zeigten einen Längenverlust im langjährigen Mittel (-9m) für die beobachteten Gletscher der Goldberggruppe. Der untere Boden des Goldbergkeeses sowie das Wurtenkees blieben in beiden Jahren unter dem langjährigen Mittel von -7 m. Das Kleinfleisskees zeigte für 2014/15 einen Rückzug von -7 m, und für 2015/16 einen von -2 m. Die Gletscher sind somit nach den zwei gletschergünstigen Jahren 2012/13 und 2013/14 wieder zu ihrem langjährigen Trend zurückgekehrt.

2. LÄNGENMESSUNG 2014 / 2015 UND 2015 / 2016


Der Längenverlust für das Goldbergkees ergibt sich für beide Haushaltsjahre aus dem Mittel von 5 eingemessenen Fixpunkten. Die einzelnen Fixpunkte zeigten Beträge von -1 bis -20 m, das Mittel ergab einen Längenverlust von -8 bzw. -10.5 m. Die Messungen wurden jeweils Mitte September mit einem Maßband durchgeführt. Die seit 2010/11 abgerissene Zunge (untere Boden) erlebt weiter eine Zerlegung in Form von zurückschreitenden Gletschertoren und dem Absinken der Oberfläche.

Die Längenänderung für das Kleinfleisskees ergibt sich für beide Haushaltsjahre aus dem Mittel von 5 eingemessenen Fixpunkten. Die einzelnen Fixpunkte zeigten Werte im Bereich von 0 bis -12 m. Die Messungen wurden jeweils Mitte September mit einem Maßband durchgeführt.

Die Längenänderung für den Zeitraum 2014 – 2016 ergab für das Wurtenkees eine Längenänderung von -26 m und wurde aus dem Mittel von 3 eingemessenen Fixpunkten bestimmt. Die einzelnen Fixpunkte zeigten Längenänderungen im Bereich von -20 bis -30 m. Die Messungen wurden Mitte September 2016 mit einem Maßband durchgeführt. Im September 2015 wurde keine Messung durchgeführt. Der mittlere jährliche Längenverlust für das Haushaltsjahr 2014/15 wurde linear interpoliert.

Abbildung 1: Balkendiagramm der jährlichen Längenmessungen der einzelnen Gletscher für das Haushaltsjahr 2014/15. Der mittlere Betrag über die ganze Messperiode ist in der Klammer angegeben. Das Balkendiagramm rechts unten stellt die mittleren Beträge für alle drei Gletscher dar.

Abbildung 2: Balkendiagramm der jährlichen Längenmessungen der einzelnen Gletscher für das Haushaltsjahr 2015/16. Der mittlere Betrag über die ganze Messperiode ist in der Klammer angegeben. Das Balkendiagramm rechts unten stellt die mittleren Beträge für alle drei Gletscher dar.

Kontakt

Daniel Binder Zentralanstalt für Meteorologie und Geodynamik Abteilung Klimaforschung Hohe Warte 38 A-1190 Wien daniel.binder@zamg.ac.at http://www.zamg.ac.at/klimawandel

VEREINSNACHRICHTEN UND TÄTIGKEITSBERICHT 2014

(Auszug aus dem Protokoll der Jahreshauptversammlung des Sonnblick-Vereines am 23.03.2015)

BERICHT DES OBSERVATORIUMSLEITER MAG. B. NIEDERMOSER

Personal und Schulungen

Hauptbeobachter: L. Rasser, M. Daxbacher, H. Scheer und N. Daxbacher

Vertretungsdienst: H. Tannerberger, T. Krombholz, A. Wiegele

Team perfekt eingespielt – läuft sehr gut – Vertretungsdienste sind gut geschult und ermöglichen einen reibungsfreien Ablauf.

Für 2015 ist der BL-Seilbahnkurs von Norbert Daxbacher vorgesehen - Dauer: 3 Monate

Für einen reibungslosen Betrieb ist es notwendig, dass alle 4 Hauptbeobachter die BL Ausbildung haben.

Beobachtertrainings:

2014 - Beobachtertraining I: 05./06. März 2014

Inhalte: a) Seilbahntraining inkl. aller Unterweisungen und Erneuerungen durch externen BL Koller.

b) Höhen- und Absturztraining vor Ort durch externe Firma Fall Protection

Bis auf einen Mitarbeiter konnte gesamte Mannschaft teilnehmen!

2014 - Beobachtertraining II: 25./26. September 2014

Inhalte: a) Aerosolmessungen (TU)

- b) WADOS und Eventsampling
- c) UV-Strahlung
- d) Gesamtozon (BOKU)
- e) Seilbahnrelevantes
- f) OM
- g) Nachbesprechung 20 kV Notbetrieb

geplant: 2015 - Beobachtertraining I: 23./24. April 2015

Inhalte: Wetterbeobachtung (Synop, Metar, Klima), AGES (Klimstein), Höhentraining (fall protection), Seilbahn (Unterweisungen, Abseilübung), Dienstbesprechung

geplant: 2015 - Beobachtertraining II: 17./18. September 2015 (Ersatz: 24./25.09.) Inhalte: noch offen, angedacht sind UBA (Gase), Lawinen, Seilbahnrelevantes

Sonstige Schulungen: Brandschutzbeauftrage, Erste Hilfe, etc.

Seilbahntraining: laufend ZAMG intern und die Vielfahrer unter den Projektanten – insbesonders geht es um Abseilübungen

Gebäude und Inventar

Sommerbegehung ZAMG/SV durchgeführt 1. Juli 2014 - die Begehung 2015 ist Ende Juni geplant

Zahlreiche kleiner Adaptierungen oder Reparaturen auf Basis der Sommerbegehung und ASA Begehung umgesetzt:

Beispielhaft: in der Talstation wurde Eingangsbereich verbreitert – erleichtert den Transport von sperrigen Objekten - Boden in der Talstation, Schäden wurden ausgebessert und saniert - Schneerechen im Dachbereich Eingang Talstation erreichtet – zahlreiche kleinere Aufträge für Schmiedemeister und Elektriker waren notwendig.

Möbel: Zimmer Daxbacher, Küche, Speis wurden erneuert

Offen für 2015 sind unter anderem: Wetterturm - Schindeln/Verputz. Löscheinrichtung in Form von Schlauch und Pumpe um Wasserreservoir im Notfall anzapfen zu können.

Gipfel und Gebäudeumfeld

Geologische Sanierung: Nächste behördliche Kontrolle ist 2015 vorgeschrieben.

Seit 06/2013 – Steinschlagmonitoring – wird auch Projekten als Beobachtungsgröße zur Verfügung gestellt.

Externe Messplattform der ZAMG – südlich des Obs-Gebäudes - als neuer Standort für Niederschlagsmessung und als Plattform für diverse andere Messungen. Umsetzung im Sommer 2015. Freigabe von Grundbesitzer (NF) und positiver Bescheid Nationalparkverwaltung vorhanden.

Infrastruktur

Heizung/Klima – umgesetzt 2011 bis 2013 – läuft stabil – allerdings an Einzeltagen Steuerungsprobleme.

Solaranlage als letzter Teil der Heizungserneuerung 10-11/2013 umgesetzt. Im Investitionsplan der ZAMG für 2015 noch vorgesehen: eine zweite Kältemaschine als Standby zur Optimierung der Kühlung.

E-Installationen / Projekt auf 2015 verschoben: 2014 erfolgt jedoch erste Grobplanung und Konzept durch externen Planer. Umsetzung abhängig von Personalressourcen der ZAMG.

HAUPTPROBLEM 2014: Ausfall der 20 kV Leitung

81 Tagen im Notbetrieb (15.4.14, 23.30 Uhr - 05.07.14, 11:30 Uhr) – Notversorgung über Dieselaggregate – Minimalprogramm – großer Aufwand den Betrieb aufrecht zu erhalten – Forschungsbetrieb auf 5% reduziert – kein GAW Messungen – nur Notfahrten mit Seilbahn – Extremsituation für Beobachterteam - 16.000 Liter Diesel in 600 Kanistern transportiert.

Status der 20 kV-Leitung: das Kabel ist 35 Jahre alt – APG hat den Schaden beheben können, mit hohem Risiko – 2015 ist der Neubau der Leitung seitens der APG vorgesehen.

Der Störfall hat das Sonnblickjahr 2014 massive geprägt – sowohl inhaltlich – als auch in Bezug auf den Forschungsbetrieb und finanziell für ZAMG und SV.

Auswirkungen auf Infrastruktur: Starke Belastung der Elektroinstallationen und Geräte – kurzzeitige Ausfälle fast aller Systeme – Heizung und Kommunikation aufrecht zu erhalten hatte oberste Priorität – zahlreiche Folgeschäden – Server musste verlegt werden, etc.

IT/SONNBLICK NET/Messtechnik

Serverbetrieb musste für 3 Monate in die Talstation verlegt werden. Server wird in eine Cloud-Lösung übergeführt (2015).

Seilbahn

Adaptierung und Verbesserung der bestehenden Anlage hat sich neuerlich durch externe Einflüsse verzögert.

Konkret geht es darum, die Seilbahn des Observatoriums in Teilbereichen zu erneuern um die Sicherheit zu erhöhen.

Aktuelle Zeitschiene: 03-04/2015 erwarten wir ein konkretes Angebot mit Detailplanungen. Nach der Behördengenehmigung ist eine Umsetzung – abhängig vom finanziellen Spielraum – Ende 2015 möglich.

Die sicherheitstechnische Adaptierung der SBO-Seilbahn (300.000 Euro Projekte) wird wie folgt finanziert:

135.000 Euro ZAMG 125.000 Euro Land Sa

25.000 Euro Land Salzburg 25.000 Euro Sonnblickverein 15.000 Euro Alpenverein

Sicherheit

Routinemäßige Seilbahnschulung und Abseilübungen sind Standard. Umfangreiche Erste-Hilfe-Schulungen aller Beobachter. Höhentrainingskurse und Höhenuntersuchung des ZAMG-Personals wird seit 2014 jährlich durchgeführt.

Organisation und Abläufe

Anmeldung Seilbahnfahrten: Online mit genauer Zeitangabe notwendig um Stehzeiten zu vermeiden. Wichtig: Fahrten in Dunkelheit oder in die Dämmerung hinein sind nur für Notfälle (mit Beleuchtung) möglich. Hinweis: keine Fahrten vor 08:00 und nach 17:00 Uhr.

Es gibt keine spontanen Fahrten – jede Fahrt muss auch in den Arbeitsablauf der Beobachter passen und soll abgestimmt sein – bei jeder Fahrt steht ein Beobachter min. 30 Minuten in der Fahrerkanzel.

Rauchverbot – Im Observatorium und auf der Messplattform besteht striktes Rauchverbot. Geraucht werden darf im Eingangsbereich Obs/Zittelhaus (Süden) – es geht um die Emissionen!

Schnittstellen

AV-Rauris: permanenter guter Kontakt und zahlreiche Schnittstellen – jährliche Abstimmungsrunde angepeilt im Mai/Juni 2015

NF-Österreich: ebenfalls guter Kontakt – letzte Abstimmung im Zusammenhang mit der geplanten Messplattform

Öffentlichkeitsarbeit

Broschüre 2014: Die Sonnblickbroschüre wurde 2014 in Abstimmung mit dem Conrad-Observatorium produziert und an alle Mitglieder versendet. Nächste Ausgabe 2016 – angestrebt wird ein 2-Jahres-Rhythmus.

Newsletter: Über die bekannten Emailadressen wurden an die SV Mitglieder NEWSLETTER-Beiträge und interessante Info versendet – z.B.: über den 20 kV Störfall und einen typischen Beobachtertag.

Ausgaben gesamt

BUDGET SONNBLICK-VEREIN 2014

Einnahmen		
(Saldovortrag aus 2013)	EUR	68.906,65
,		
Mitgliedsbeiträge	EUR	10.382,00
Spenden (Beträge unter € 50)	EUR	942,00
Spende Andreas Strasser	EUR	72,00
Spende Dr. Andreas Schuster	EUR	152,00
Spende Dr. Fritz Straub	EUR	76,00
Spende Dr. Richard Reißer	EUR	226,00
Spende Dr. Wolfgang Heinz Porsche	EUR	200,00
Spende Florian Radlherr	EUR	76,00
Spende Frieda Nagl	EUR	176,00
Spende Fritz Straub	EUR	76,00
Spende Gerhard Wörle	EUR	152,00
Spende Herbert Mayr	EUR	50,00
Spende Klaus Hager	EUR	226,00
Spende Ludwig Neureiter	EUR	76,00
Spende Norbert Gröger	EUR	52,00
Spende Hubert Ploderer	EUR	200,00
Spende Wilfried Scherbinek	EUR	100,00
Spende Stephan Zeilinger	EUR	192,00
Spende Werner Kleinholz	EUR	152,00
Infrastruktureinnahmen	EUR	3.874,00
Österreichische Akademie der Wissenschaften	EUR	25.000,00
BMWF Subvention (2014)	EUR	59.410,20
Zinserträge	EUR	226,93
Auflösung BAWAG PSK	EUR	3.175,00
Auflösung Barkassa Wien	EUR	175,65
Einnahmen 2014 gesamt	EUR	105.439,78
_		
Ausgaben Versicherungen	EUR	12.279,07
-	EUR	1.103,08
Bankspesen House (Strong Tolofon Funds Aldry Installation Hoiseung)	EUR	8.427,55
Haus (Strom, Telefon, Funk, Akku, Installation, Heizung)	EUR	*
Seilbahn (Instandsetzung, Kontrolle, Wartung, Service)		92.205,46
Öffentlichkeitsarbeit (inkl. Porto)	EUR EUR	926,57
Ausrüstung, Arbeitsmedizin, Kurse		163,32
Gemeinde (Abfall, Kanal, Schneeräumung)	EUR	3.836,80
Auflösung BAWAG PSK	EUR	3.175,00
Auflösung Barkassa Wien	EUR	175,65

EUR

125.292,50

Bank Austria 0044-14025/00 (Baukonto Akademie)		
Saldovortrag aus 2013	EUR	23.553,88
Einnahmen 2014	EUR	25.167,28
Ausgaben 2014	EUR	37.384,70
Saldovortrag für 2015	EUR	11.336,46
Bank Austria 0044-14033/00 (OBS Erhaltungskonto)		
Saldovortrag aus 2013	EUR	41.527,82
Einnahmen 2014	EUR	80.085,39
Ausgaben 2014	EUR	84.142,54
Saldovortrag für 2015	EUR	37.470,67
Barkasse Salzburg		
Saldovortrag aus 2013	EUR	596,41
Einnahmen 2014	EUR	219.00
Ausgaben 2014	EUR	568,61
Saldovortrag für 2015	EUR	246,80
PSK 7.280.971		
Saldovortrag aus 2013	EUR	3.052,89
Einnahmen 2014	EUR	122.11
Ausgaben 2014	EUR	3.175,00
Kontoauflösung am 15.04.2014	EUR	•
Barkasse WIEN		
Saldovortrag aus 2013	EUR	175,65
Einnahmen 2014	EUR	-
Ausgaben 2014	EUR	175.65
Kassaauflösung am 01.04.2014	EUR	-
Zusammenstellung:		
Saldovortrag aus 2013	EUR	68.906,65
Einnahmen 2014	EUR	105.439,78
Ausgaben 2014	EUR	125.292,50
Übertrag für 2015	EUR	49.053,93

VEREINSNACHRICHTEN UND TÄTIGKEITSBERICHT 2015

(Auszug aus dem Protokoll der Jahreshauptversammlung des Sonnblick-Vereines am 13.06.2016)

BERICHT DES OBSERVATORIUMSLEITER MAG. B. NIEDERMOSER

Personal und Schulungen

Hauptbeobachter: L. Rasser, M. Daxbacher, H. Scheer und N. Daxbacher

Vertretungsdienst: H. Tannerberger, T. Krombholz, A. Wiegele

Team perfekt eingespielt - Vertretungsdienste sind gut geschult und ermöglichen einen reibungsfreien

Ablauf.

NEU: Norbert Daxbacher BL-Seilbahnkurs positiv abgeschlossen, von Behörde bestellt (29.10.2015). Für einen reibungslosen Betrieb ist es notwendig, dass alle 4 Hauptbeobachter die BL Ausbildung haben.

NEU: Dr. Elke Ludewig ist ab 2. Mai neue Leiterin des Sonnblickobservatoriums.

Beobachtertrainings:

2015 - Beobachtertraining I: 23./24. April 2015

Inhalte: Wetterbeobachtung (Synop, Metar, Klima - Grashäftl), AGES (Klimstein, Ringer, Willnauer), Höhentraining (fall protection), Seilbahn (Unterweisungen, Abseilübung)

2015 - Beobachtertraining II: 24./25. September 2015

Inhalte: UBA (Gase - Fröhlich, Wolf), Alpine Sicherheit Sommer (Rohrmoser), AMD Psychologie (Huber), Seilbahn (Unterweisungen, Abseilübung), Dienstbesprechung

2016 - Beobachter-Trainingsblock I: Termin: 23.-25. Mai

Inhalt: Höhentraining am Obs. / Seilbahn intensiv / Team neu / GAW Schwerpunkte (Aerosole); Eislastmessung

geplant: 2016 - Beobachter-Trainingsblock II: (2 Tage) Termin: 22.+23. Sept, Ersatztermin: 29.+30. September

Inhalt: Inhalt noch offen, Seilbahnrelevantes (Übungen, etc.) wird auf jedem Fall eingeplant

Gebäude und Inventar

Sommerbegehung ZAMG/SV – geplant 06/2016 ASA-Med-Begehung – geplant 28. Sept 2016

APSY Teambesprechung (aus der psych. Evaluierung ZAMG) – geplant 01. Juli 2016

Gipfel und Gebäudeumfeld

Geologische Sanierung: Nächste Kontrolle 06-07/2016 (wetterbedingt 2015 nicht mehr möglich).

Externe Messplattform der ZAMG - südlich des Obs-Gebäudes - als neuer Standort für Niederschlagsmessung und als Plattform für diverse andere Messungen. Von ZAMG umgesetzt. Damit zusätzlicher Platz an günstigem Standort.

Platzressourcen: Langfristig ist zusätzlicher Platz nötig.

Infrastruktur

Heizung/Klima – umgesetzt 2011 bis 2013 – im Herbst 2015 finale Optimierung nötig; Ausblasen der letzten Überwärme an der Westseite des Zittelhauses

Kläranlage: Läuft planmäßig. Geruchswahrnehmungen werden dokumentiert

Quelle Zittelhausküche: um eventuelle Emissionen aus der Küche zu erfassen werden Fensteröffnungen automatisch mitdokumentiert

Solaranlage: Solarpanelle werden laufend kaputt (Alterung) – Plan: nicht mehr gesamt erneuern, sondern in einem Gesamtkonzept durch Photovoltaik ersetzen

E-Installationen neu: mehrere Jahre verschoben wegen fehlender Personalressourcen und Budgetprioritäten – Plan: 2017

20 kV Leitung: Störfall hat das Jahr 2014 massive geprägt – sowohl inhaltlich, als auch im Forschungsbetrieb und finanziell. Neubau oder Ersatz der bestehenden Leitung aus dem 1980ern ist nötig.

Aktueller Status: Verbund zieht sich vom Sonnblick zurück. Varianten werden ausgearbeitet (ZAMG, SV, mögliche Partner). Kleiner Vorteil: der Verbundraum wird frei – großer Nachteil: es kommen massive Kosten auf das Observatorium zu

BOS Digitalfunk: Sonnblick seitens der Behörde als Standort vorgesehen – aus aktueller Sicht nur im freiwerdenden Verbundraum möglich – Nutzungsvertrag folgt – aktuelle Messungen werden nicht beeinflusst

IT/SONNBLICK.NET/Messtechnik

Server wird in eine Cloud-Lösung übergeführt (2015-16). Massive Kostenersparnis.

Tauernstütze hat eigenen Windgenerator als zusätzliche Stromquelle zur Photovoltaik bekommen; primär für Kameramonitoring der Seile.

Permanenter Ceilometer Kolm – Entwicklungsprojekt der ZAMG – ist aufgestellt und kommt dieser Tage ins Netz – online Monitoring innerhalb der ZAMG (für Synoptik und Umweltmeteorologie) – wird auch ins Obervatorium Netz integriert.

Bohrlöcher – oberstes Bohrloch hängt nun direkt am Stromnetz – mit den beiden anderen Bohrlöchern gibt es noch messtechnische Probleme – Behebung in Arbeit

Seilbahn

Adaptierung und Verbesserung der bestehenden Anlage – Projekt, das seit Jahren läuft (2011), sich durch externe Einflüsse aber immer wieder verzögerte. <u>Aktueller Status</u>: Gesamtprojekt wurde ausgeschrieben (01-03/2016) und wird gerade vergeben. Behördeneinreichung 05/2016. Umsetzung 2016.

Die Kosten für die Adaptierung der SBO-Seilbahn steigen im Vergleich zum ersten Ansatz aus dem Jahr 2011 (damals 300.000 Euro Projekt) – Finanzierung ZAMG, Land Sbg, SV und AV.

Sicherheit

Routinemäßige Seilbahnschulung und Abseilübungen sind Standard. Umfangreiche Erste-Hilfe-Schulungen aller Beobachter. Höhentrainingskurse und Höhenuntersuchung des ZAMG-Personals wird seit 2014 jährlich durchgeführt. Seit 2015: Trainingseinheiten zur Alpinen Sicherheit Sommer und Winter als fixer Bestandteil.

Organisation und Abläufe

Anmeldung Seilbahnfahrten: Online mit genauer Zeitangabe notwendig um Stehzeiten zu vermeiden. Wichtig: Fahrten in Dunkelheit oder in die Dämmerung hinein sind nur für Notfälle (mit Beleuchtung) möglich. Hinweis: keine Fahrten vor 08:00 und nach 17:00.

Es gibt <u>keine spontanen Fahrten</u> – jede Fahrt muss auch in den Arbeitsablauf der Beobachter passen und soll abgestimmt sein – bei jeder Fahrt steht ein Beobachter min. 30 Minuten in der Fahrerkanzel.

Rauchverbot – Im Observatorium und auf der Messplattform besteht striktes Rauchverbot. Geraucht werden darf im Eingangsbereich Obs/Zittelhaus (Süden) – es geht um die Emissionen!

Schnittstellen

AV-Rauris: permanenter guter Kontakt und zahlreiche Schnittstellen – Vortrag und Austausch bei AV-JHV im 03/2016

NF-Österreich: ebenfalls guter Kontakt – letzte Abstimmung im Zusammenhang mit der geplanten Messplattform

Abwassergenossenschaft Kolm Saigurn: Versammlung 06/2016

Gemeinde Rauris: guter Kontakt und Austausch - <u>Zugang Talschluß im Winter</u>: neue Winterschlüssel ab 12/2015. <u>Zugang Sommer</u>: Schrankenkarte Lenzanger

Öffentlichkeitsarbeit

Broschüre 2016: Ausgabe 2016 in finaler Umsetzung - in Abstimmung mit dem Conrad-Observatorium – angestrebt wird ein 2-Jahres-Rhythmus.

BUDGET SONNBLICK-VEREIN 2015

Einnahmen		
(Saldovortrag aus 2014)	EUR	49.053,93
Mitgliedsbeiträge	EUR	5.579,00
Spenden (Beträge unter € 50)	EUR	236,00
Spende Andreas Schuster	EUR	76,00
	EUR	226,00
Spende Dr. Richard Reißer Spende Florian Radlherr	EUR	76,00
Spende Frieda Nagl	EUR	176,00
Spende Gerhard Woerle	EUR	100,00
•	EUR	700,00
Spende GROHAG Salzburg Spende Klaus Hager	EUR	226,00
	EUR	
Spende Hubert Ploderer		100,00
Spende Ludwig Neureiter	EUR	126,00
Spende Ronald Eisenwagner	EUR	76,00
Spende W. Kleinholz Infrastruktureinnahmen	EUR EUR	76,00
		8.816,56
Österreichische Akademie der Wissenschaften 2015	EUR EUR	25.000,00
BMWFW ZAMG (2015)		60.420,00
ZAMG zusätzlicher Beitrag 2015	EUR	20.000,00
Zinserträge	EUR	0,04
Einnahmen 2015 gesamt	EUR	122.009,80
Ausgaben		
Versicherung	EUR	9.307,41
Bankspesen	EUR	706,34
Haus (Strom, Telefon, Funk, Akku, Installation, Heizung)	EUR	13.958,38
Seilbahn (Instandsetzung, Kontrolle, Wartung, Service)	EUR	76.723,80
Öffentlichkeitsarbeit (inkl. Porto)	EUR	3.382,54
Ausrüstung, Arbeitsmedizin, Kurse	EUR	1.019,71
Gemeinde (Abfall, Kanal, Schneeräumung)	EUR	4.044,15
Ausgaben gesamt	EUR	109.142,33

Bank Austria 0044-14025/00 (Baukonto Akademie)		
Saldovortrag aus 2014	EUR	11.336,46
Einnahmen 2015	EUR	25.000,03
Ausgaben 2015	EUR	147,26
Saldovortrag für 2016	EUR	36.189,23
Band Austria 0044-14033/00 (OBS Erhaltungskonto)		
Saldovortrag aus 2014	EUR	37.470,67
Einnahmen 2015	EUR	98.004,48
Ausgaben 2015	EUR	109.826,88
Saldovortrag für 2016	EUR	25.648,27
Barkasse Salzburg		
Saldovortrag aus 2014	EUR	246,80
Einnahmen 2015	EUR	25,00
Ausgaben 2015	EUR	187,90
Saldovortrag für 2016	EUR	83,90
Zusammenstellung:		
Saldovortrag aus 2014	EUR	49.053,93
Einnahmen 2015	EUR	123.029,51
Ausgaben 2015	EUR	110.162,04
Übertrag für 2016	EUR	61.921,40

MESSERGEBNISSE 2014/2015 BIS 2015/2016 IM SONNBLICKGEBIET

Petra Mayer, Wien

Tabelle 1: Monatliche Schneehöhen im Haushaltsjahr 2014/2015 im Sonnblickgebiet in cm.

Die Schneepegel werden am Beginn des Haushaltsjahres (1.10.) auf Null gestellt

Absolu	twerte														
Nr.	Aktueller Name	Höhe (m)	1.10.	1.11.	1.12.	1.1.	1.2.	1.3.	1.4.	1.5.	1.6.	1.7.	1.8.	1.9.	1.10.
	Goldbergkees														
PG1*	Unterer Keesboden	2400	0	50	66	93	111	155	196	165	12	0	0	6	0
PG2*	Oberer Keesboden	2670	0	108	98	146	202	255	265	225	71	0	0	14	54
PG3	Steilhang	2878	0	120	160	210	250	350	480	480	320	0	0	20	85
PG4	Untere Brettscharte	2923	0	140	260	350	360	400	500	460	230	0	0	20	90
PG5	Obere Brettscharte	2958	0	165	280	300	317	410	485	450	fehit	100	30	25	95
PG6*	Fleißscharte	2980	0	173	168	315	303	463	463	433	318	109	40	45	105
	Kleines Fleißkees	,			-										
PF1	Fleißkees Zunge	2820	0	195	190	260	270	310	360	370	280	0	0	10	80
PF2	Fleißkees unten	2860	0	180	180	370	390	450	420	350	290	140	60	40	95
PF3	Fleißkees oben	2940	0	100	100	130	100	200	340	260	144	45	0	20	90
PF4	Pilatusscharte	2905	0	150	170	250	260	310	340	350	260	40	0	20	95

^{*)} Mittelwert aus vier benachbarten Schneepegel

Abweichungen vom Normalwert 1961 bis 1990

Nr.	Aktueller Name	Höhe (m)	1.10.	1.11.	1.12.	1.1.	1.2.	1.3.	1.4.	1.5.	1.6.	1.7.	1.8.	1.9.	1.10.
	Goldbergkees														
PG1	Unterer Keesboden	2400	0	-5	-62	-96	-131	-131	-136	-199	-314	-240	-100	-26	-22
PG2	Oberer Keesboden	2670	0	54	-23	-23	-14	-1	-41	-118	-238	-241	-111	-28	19
PG3	Steilhang	2878	0	66	39	42	35	89	159	113	-26	-280	-152	-59	-27
PG4	Untere Brettscharte	2923	0	82	127	181	146	150	190	90	-119	-173	-172	-77	10
PG5	Obere Brettscharte	2958	0	103	155	134	98	168	186	78	fehlt	-203	-162	-94	5
PG6	Fleißscharte	2980	0	101	30	126	73	214	156	57	-47	-220	-185	-109	-37
	Kleines Fleißkees														
PF1	Fleißkees Zunge	2820	0	139	89	116	79	97	101	55	0	-227	-105	-38	38
PF2	Fleißkees unten	2860	0	103	46	172	125	157	71	-63	-104	-220	-190	-137	-56
PF3	Fleißkees oben	2940	0	40	6	23	-28	62	151	11	-91	-154	-100	-27	36
PF4	Pilatusscharte	2905	0	83	35	74	37	56	37	-13	-96	-275	-194	-109	-13

Tabelle 2: Monatliche Schneehöhen im Haushaltsjahr 2015/2016 im Sonnblickgebiet in cm. Die Schneepegel werden am Beginn des Haushaltsjahres (1.10.) auf Null gestellt

Absolutwerte

Nr.	Aktueller Name	Höhe (m)	1.10	1.11.	1.12.	1.1.	1.2.	1.3.	1.4.	1.5.	1.6.	1.7.	1.8.	1.9.	1.10.
	Goldbergkees														
PG1*	Unterer Keesboden	2400	0	66	34	89	186	211	220	158	37	0	0	0	5
PG2*	Oberer Keesboden	2670	0	24	84	136	259	265	285	270	121	0	0	0	11
PG3	Steilhang	2878	0	80	80	160	290	330	180	160	250	0	0	0	5
PG4	Untere Brettscharte	2923	0	100	100	140	330	340	350	320	200	60	0	0	40
PG5	Obere Brettscharte	2958	0	120	160	180	320	245	370	380	300	65	0	0	38
PG6*	Fleißscharte	2980	0	140	148	180	344	393	478	465	430	138	53	35	64
	Kleines Fleißkees						-								
PF1	Fleißkees Zunge	2820	0	140	125	160	280	250	350	335	275	100	0	0	70
PF2	Fleißkees unten	2860	0	150	130	210	365	270	480	450	410	250	120	80	80
PF3	Fleißkees oben	2940	0	90	85	120	310	290	285	280	230	70	0	0	80
PF4	Pilatusscharte	2905	0	145	140	170	350	320	400	400	340	200	50	10	70

^{*)} Mittelwert aus vier benachbarten Schneepegel

Abweichungen vom Normalwert 1961 bis 1990

Nr.	Aktueller Name	Höhe (m)	1.10.	1.11.	1.12.	1.1.	1.2.	1.3.	1.4.	1.5.	1.6.	1.7.	1.8.	1.9.	1.10.
	Goldbergkees					•					-				
PG1	Unterer Keesboden	2400	0	11	-94	-100	-56	-75	-112	-206	-289	-240	-100	-32	-17
PG2	Oberer Keesboden	2670	0	-30	-37	-33	43	9	-21	-73	-188	-241	-111	-42	-24
PG3	Steilhang	2878	0	26	-41	-8	75	69	-141	-207	-96	-280	-152	-79	-53
PG4	Untere Brettscharte	2923	0	42	-33	-29	116	90	40	-50	-149	-233	-172	-97	-40
PG5	Obere Brettscharte	2958	0	58	35	14	101	3	71	8	-38	-238	-192	-119	-52
PG6	Fleißscharte	2980	0	68	10	-9	114	144	171	89	65	-191	-172	-119	78
	Kleines Fleißkees														
PF1	Fleißkees Zunge	2820	0	84	24	16	89	37	91	20	-5	-127	-105	-48	28
PF2	Fleißkees unten	2860	0	73	-4	12	100	-23	131	37	16	-110	-130	-97	-71
PF3	Fleißkees oben	2940	0	30	-9	13	183	152	96	31	-5	-129	-100	-47	26
PF4	Pilatusscharte	2905	0	78	5	-6	127	66	97	37	-16	-115	-144	-119	-38

Tabelle 3: Monatliche Niederschlagssummen im Haushaltsjahr 2014/2015

Niederschlagsmessungen im Sonnblickgebiet Oktober 2014 bis September 2015, Werte in mm Einzugsgebiete von Goldberg-, Kleines Fleiß- und Wurtenkees

04-4:-	-	D-4	SH		A1		1		14	A	N 4 - :	1	11	A		Okt-	Mai-	Okt-
Statio	n	Datenquelle	(m)	Okt	NOV	Dez	Jan	Feb	маг	Apr	маі	Jun	Jui	Aug	Sep	Apr	Sep	Sep
Sonn	blick Gipfel												-					
TG4	Sonnblick-horizontal	ZAMG	3095	308	76	160	fehlt	fehlt	232	140	240	160	180	132	200	fehlt	912	fehlt
TG5	Sonnblick-parallel	ZAMG	3095	220	28	164	188	128	240	64	296	240	216	244	348	1032	1344	2376
Sonnt	olick-Ombro Nord	ZAMG	3080	59	262	78	141	56	145	229	188	135	155	82	104	970	664	1634
Sonnt	olick-Ombro Süd	ZAMG	3098	93	75	152	155	95	187	148	170	247	180	123	222	905	942	1847
Goldt	ergkees																	
Rauris	s-Nord (TA)	ZAMG	934	82	37	30	79	8	39	91	149	114	161	109	146	366	679	1045
Buche	eben	HD-Salzburg	1140	112	73	55	107	24	53	109	169	139	192	100	136	533	736	1269
TG1	Kolm-Saigurn	ZAMG	1600	168	70	190	143	108	93	64	211	36	107	143	208	836	705	1541
TG2	Radhaus	ZAMG	2117	52	64	280	143	92	80	100	192	40	76	120	120	811	548	1359
TG3	Rojacherhütte	ZAMG	2585	156	92	272	140	116	Eis	64	244	168	104	144	140	fehlt	800	fehlt
Kleine	es Fleißkees																	
Heilige	enblut	HD-Kärnten	1380	57	163	39	57	9	25	44	114	76	145	93	95	394	523	917
TF1	Unteres Fleißkees	ZAMG	2558	136	72	68	120	88	180	24	220	140	192	180	160	688	892	1580
TF2	Fleißtotalisator	ZAMG	2560	84	240	60	100	60	140	36	168	76	100	160	100	720	604	1324
TF3	Oberes Fleißkees	ZAMG	2802	156	140	108	140	92	180	44	200	100	64	164	152	860	680	1540
Wurte	nkees																	
Innerf	ragant	HD-Kärnten	735	73	210	46	46	14	29	28	101	82	193	62	105	446	543	989
TW1 9	Stausee	KELAG	2420	86	217	178	Ende	der N	Messu	ngen								
тwз с	Sletscherzunge	KELAG	2511	268	108	89	Ende	der f	Messu	ngen								
TW4 S	Steilabbruch	KELAG	2791	128	163	121	Ende	der f	Messu	ngen								

TA= teilautomatische Wetterstation

Abweichung der Niederschlagssummen im Sonnblickgebiet Okt. 2014 bis Sept. 2015 vom Normalwert 1961-1990, Werte in Prozent

Einzugsgebiete von Goldberg-, Kleines Fleiß- und Wurtenkees

Statio	on	Datenquelle	SH (m)	Okt	Nov	Dez	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt- Apr	Mai- Sep	Okt- Sep
Sonn	blick Gipfel																-	
TG4	Sonnblick-horizontal	ZAMG	3095	235	39	61	fehlt	fehlt	99	55	111	64	72	57	109	fehl	t 81	fehit
TG5	Sonnblick-parallel	ZAMG	3095	129	13	69	76	62	99	21	104	72	61	72	139	64	86	75
Sonni	blick-Ombro Nord	ZAMG	3105	69	235	73	140	61	129	185	138	120	131	67	120	132	115	125
Sonni	blick-Ombro Süd	ZAMG	3098	83	50	92	99	74	111	79	95	142	91	62	163	85	107	95
Goldi	bergkees																	
Rauri	s-Nord (TA)	ZAMG	934	124	53	44	127	17	74	147	143	84	101	70	142	86	103	96
Buche	eben	HD-Salzburg	1140	156	92	71	153	45	84	147	159	97	122	61	126	109	108	109
TG1	Kolm-Saigurn	ZAMG	1600	115	51	146	112	103	69	35	126	17	54	72	141	87	76	82
TG2	Radhaus	ZAMG	2117	38	47	262	163	90	73	73	108	20	42	61	81	99	61	79
TG3	Rojacherhütte	ZAMG	2585	98	44	141	69	76	Eis	28	111	63	40	58	73	fehl	68	fehit
Klein	es Fleißkees																	
Heilig	enblut	HD-Kärnten	1380	89	220	78	116	21	54	81	144	82	141	82	122	104	112	108
TF1	Unteres Fleißkees	ZAMG	2558	131	56	57	122	95	155	16	176	88	115	107	121	85	119	101
TF2	Fleißtotalisator	ZAMG	2560			"kei	ne M	ittelw	erte '	vorha	nder	weg	en K	ürze	der F	Reihe	n"	
TF3	Oberes Fleißkees	ZAMG	2802	134	104	79	115	82	137	26	118	52	32	80	101	93	74	84
Wurte	enkees																	
Innerf	ragant	HD-Kärnten	735	103	236	90	96	30	57	38	109	77	166	51	127	104	105	104
TW1	Stausee	KELAG	2420	92	179	194	Ende	der f	Messu	ıngen								
тwз	Gletscherzunge	KELAG	2511	175	55	46	Ende	der f	Messu	ıngen								
TW4	Steilabbruch	KELAG	2791	110	108	96	Ende	der M	Messu	ıngen								

TA= teilautomatische Wetterstation,

TW1 - TW4... Werte sind nicht homogenisiert (Ablesung nicht immer zu Monatsbeginn)

Tabelle 4: Monatliche Niederschlagssummen im Haushaltsjahr 2015/2016

Niederschlagsmessungen im Sonnblickgebiet Oktober 2015 bis September 2016, Werte in mm Einzugsgebiete von Goldberg-, Kleines Fleiß- und Wurtenkees

Statio	on	Datenquelle	SH (m)	Okt	Nov	Dez	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt- Apr		Okt- Sep
Sonn	blick Gipfel																	
TG4	Sonnblick-horizontal	ZAMG	3095	80	140	8	212	196	132	344	160	216	188	224	140	1112	928	2040
TG5	Sonnblick-parallel	ZAMG	3095	140	200	12	168	212	136	412	216	244	196	332	200	1280	1188	2468
Sonn	blick-Ombro Nord	ZAMG	3080	110	46	8	138	198	82	169	138	132	125	122	44	751	561	1312
Sonn	blick-Ombro Süd	ZAMG	3098	127	98	17	181	207	150	152	223	183	184	198	112	932	900	1832
Gold	bergkees																	
Rauri	s-Nord (TA)	ZAMG	934	79	22	17	90	74	33	71	135	172	160	169	63	386	699	1085
Buch	eben	HD-Salzburg	1140	79	21	23	86	94	58	fehlt	fehlt	217	170	152	48	fehlt	fehl	fehlt
TG1	Kolm-Saigurn	ZAMG	1600	129	29	14	115	176	111	122	125	251	197	251	54	696	878	1574
TG2	Radhaus	ZAMG	2117	192	40	8	140	200	176	92	100	320	152	228	72	848	872	1720
TG3	Rojacherhütte	ZAMG	2585	164	144	8	192	176	168	204	180	344	328	160	120	1056	1132	2188
Klein	es Fleißkees																	
Heilig	enblut	HD-Kärnten	1380	85	4	6	50	99	28	52	91	150	82	112	38	324	473	797
TF1	Unteres Fleißkees	ZAMG	2558	116	12	12	84	176	156	120	184	244	160	192	140	676	920	1596
TF2	Fleißtotalisator	ZAMG	2560	116	32	12	88	188	144	136	76	184	124	180	120	716	684	1400
TF3	Oberes Fleißkees	ZAMG	2802	176	56	16	108	184	132	132	180	244	196	228	160	804	1008	1812
Wurt	enkees									-								
inner	fragant	HD-Kärnten	735	70	3	2	29	87	39	38	58	128	82	148	31	268	447	715

TA= teilautomatische Wetterstation

Abweichung der Niederschlagssummen im Sonnblickgebiet Okt. 2015 bis Sept. 2016 vom Normalwert 1961-1990, Werte in Prozent

Einzugsgebiete von Goldberg-, Kleines Fleiß- und Wurtenkees

Statio	on	Datenquelle	SH (m)	Okt	Nov	Dez	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt- Apr	Mai- Sep	Okt- Sep
Sonr	blick Gipfel															•	. '	
TG4	Sonnblick-horizontal	ZAMG	3095	61	71	3	82	91	56	135	74	86	76	97	77	72	2 82	76
TG5	Sonnblick-parallel	ZAMG	3095	82	94	- 5	67	103	56	137	76	73	56	98	80	79	76	78
Sonn	blick-Ombro Nord	ZAMG	3105	128	3 41	8	137	216	73	136	101	117	105	100	51	102	2 97	100
Sonn	blick-Ombro Süd	ZAMG	3098	113	65	10	115	161	89	81	125	105	93	100	82	87	7 102	94
Gold	bergkees																	
Rauri	s-Nord (TA)	ZAMG	934	120	31	25	145	157	62	115	130	126	100	108	61	90	106	100
Buch	eben	HD-Salzburg	1140	110	27	30	123	177	92	fehlt	fehlt	151	108	93	44	fehl	t fehlt	fehlt
TG1	Kolm-Saigurn	ZAMG	1600	88	3 21	11	90	168	83	66	75	120	99	126	37	72	2 95	83
TG2	Radhaus	ZAMG	2117	141	29	8	159	196	160	67	56	158	84	116	49	104	1 97	100
TG3	Rojacherhütte	ZAMG	2585	103	3 70	4,1	94	116	81	91	82	129	128	65	62	78	3 96	86
Klein	es Fleißkees			ŀ														
Heilig	enblut	HD-Kärnten	1380	133	5 5	12	102	236	61	96	115	161	80	98	49	85	101	94
TF1	Unteres Fleißkees	ZAMG	2558	112	2 9	10	86	189	134	79	147	153	96	114	106	83	3 123	102
TF2	Fleißtotalisator	ZAMG	2560			"ke	ine M	littelw	erte '	vorha	ander	ı weg	en K	ürze	der F	Reihe	n"	
TF3	Oberes Fleißkees	ZAMG	2802	152	2 41	12	89	164	101	77	107	128	98	111	107	87	7 110	98
Wurt	enkees																	
Inner	fragant	HD-Kärnten	735	99) 3	4	60	185	76	52	62	121	71	122	37	62	2 86	75

TA= teilautomatische Wetterstation

TW1 – TW4... Werte sind nicht homogenisiert (Ablesung nicht immer zu Monatsbeginn)

Ergebnisse der meteorologischen Beobachtungen auf dem Sonnblickgipfel (H=3105 m) aus dem Jahr 2015

	91	Luffdruck (bPa)	(Pa)	Luft	Lufttemperatur	atur	Bewöl		Niederschlag	ag	Zahi	Zahl der Tage mit	le mit		Ta	Tage		Sonnen-	Windstär-
	3	ים מסוף	. a)	٥	(Grad C)		kung in	(N+S)/2	(N+S)/2 Tagesmax.	Tage	Schnee-	Nebel	Sturm	heitere	trübe	Frost	Eis	schein-	ke Mittel*
	Mittel*	Max	Min	Mittel**	Мах	Min	Zehntel	(mm)	(mm)	gr.gl.0.1mm	fall***		gr.gl.8 Bft	(<2/10)	(>8/10)	(Min<0)	(Max<0)	dauer (h)	(m/s)
Jan	688,3	704,4	0'259	-11,8	-1,6	-20,2	0'2	172	32	23	23	23	22	-	11	31	31	96	10,2
Feb	8,989	703,4	665,2	-12,6	4,3	-24,1	5,4	76	17	7	11	15	9	7	6	28	28	145	9,1
Mar	691,8	7007	682,0	-10,2	-3,3	-19,1	9'9	151	56	15	15	18	6	6	13	34	31	160	8,7
Арг	694.1	704,1	682,4	9'2-	1,3	-19,4	6,7	197	4	17	17	19	7	_	1	8	28	195	7,1
Mai	696,3	705,7	8,789	-2,2	5,3	9'6-	8,3	180	70	21	16	23	6	0	19	28	13	134	7,7
Jun	701,3	709,5	691,8	4,	6,3	-6,2	8.0	197	59	19	5	21	9	0	16	17	4	143	5,9
<u> </u>	703,7	712,7	694,2	6,2	13,9	-4,2	9'9	162	52	21	-	12	-	2	1	5	0	216	5,1
Aug	703,2	711,5	694,2	5,1	13,0	-2,1	6,2	127	52	15	-	12	7	2	10	5	0	222	5,7
Sep	2'269	702,7	0'689	4,1-	8,5	6'8-	7,5	161	33	16	80	24	5	2	4	23	11	143	8,1
Š	0'969	708,1	688,2	-3,1	2,9	-11,8	6,5	114	23	4	11	19	7	9	16	31	20	147	8,3
Nov Nov	9'969	7.607	671,6	-4,6	6,4	-17,4	5,2	92	16	თ	æ	æ	13	7	8	28	15	185	8,8
Dez	702,5	707,5	696,2	-4,2	2,4	-14,0	2,9	4	7	7	7	4	က	12	Э	31	24	211	6,9
Jahr	696,5	696,5 712,7	657,0	-3,8	-13,9	-24,1	6,41	1627	294	188	123	198	nan	43	141	288	205	1997	9',2

Statistische Jahres-Vergleichswerte der Normalperiode 1961-1990;

	-	uffdruck (hDa)	<u> </u>	Luff	uftemperatur		Bewöl-		Niederschlag	lag	Zahl	Zahl der Tage mit	te mit		Ta	Tage		Sonnen-	Sonnen- Windstär-
	3	ומו מכע (ו	٦ <i>م</i>)	(Grad C)		kung in	(N+S)/2	kung in (N+S)/2 Tagesmax.	Tage	Schnee-	Nebel	Schnee- Nebel Sturm heitere trübe Frost	heitere	trübe	Frost	Eis	schein- ke Mittel*	ke Mittel*
	Mittel*	Aittel* Max Min Mittel* Max	Min	Mittel**	Мах	Min	Zehntel	(mm)	(mm)	gr.gl.0.1mm fall***	fall***		gr.gl.8 Bft (<2/10) (>8/10) (Min<0) (Max<0) dauer (h)	(<2/10)	(>8/10)	(Min<0)	(Max<0)	dauer (h)	(m/s)
Мах	696,3	717,1		-4,5	-4,5 15,0		7,3	2045	102	253	219	318	146	92	184	336	271	1982	9,2
Mittel	Mittel 693,6	710,5	8'999		-5,8 11,4	-27,6	8,9	1621	42	203,5	164,6	270,6	37,2	38,6	159,3	315,6	244,8	1711,3	6,7
Min	6,069		654,4	0,7-		-34,3	6,1	1250		173	134	234	11	15	124	290	221	1511	4,9

* (7+14+19)/3

^{** (7+19+}max+min)/4

^{***} nur Schnee, kein gemischter Niederschlag

Ergebnisse der meteorologischen Beobachtungen auf dem Sonnblickgipfel (H=3105 m) aus dem Jahr 2016

Liftdrick (bDs)	tdriick (hDa)	(eQ		Luff	Lufttemperatur	atur	Bewöl		Niederschlag	ag	Zahl	Zahl der Tage mit	le mit		Та	Tage		Sonnen-	Windstär-
(Grad C)			(Grad C)	Srad C)	_		kung in		(N+S)/2 Tagesmax.	Tage	Schnee-	Nebel	Sturm	heitere	trübe	Frost	Eis	schein-	ke Mittel*
Mittel* Max Min Mittel** Max Min	Min Mittel** Max	Mittel** Max	Max		Min		Zehntel	(mm)	(mm)	gr.gl.0.1mm	fall***		gr.gl.8 Bft	(<2/10)	(>8/10)	(Min<0)	(Max<0)	dauer (h)	(m/s)
686,8 704,2 672,6 -11,3 -1,6 -23,6	672,6 -11,3 -1,6	-11,3 -1,6	-1,6	-1,6		_	6,2	161	25	25	52	18	16	3	6	31	31	119	9,2
686,2 702,4 669,8 -9,9 1,3 -18,5	669,8 -9,9 1,3	-9,9 1,3	1,3		-18,5	_	8,2	212	8	25	25	24	18	0	19	29	27	75	10,5
686,5 695,6 673,3 -10,5 -0,5 -17,4	673,3 -10,5 -0,5	-10,5 -0,5	-0,5		-17,4		7,2	112	23	17	17	23	∞	5	17	31	31	159	8,6
690,3 701,3 679,0 -5,2 2,0 -16,0	679,0 -5,2 2,0	-5,2 2,0	2,0		-16,0		7,7	159	24	11	17	20	12	_	16	98	26	134	9,4
693,5 701,6 680,0 -3,4 4,7 -11,4	680,0 -3,4 4,7	-3,4 4,7	4,7		-11,4	_	8,0	174	24	21	17	23	ς.	0	18	29	21	138	7,3
698,2 710,2 686,5 1,3 12,0 -4,3 8	686,5 1,3 12,0	1,3 12,0	12,0		-4,3		0,	159	22	21	6	25	က	-	19	22	2	131	5,2
702,7 707,1 692,1 4,1 11,5 -5,4 7	692,1 4,1 11,5	4,1 11,5	11,5		-5,4 7	7	ď	160	32	22	က	50	9	0	13	S.	7	156	0'9
703,7 709,2 696,3 3,3 13,6 -5,7 6	696,3 3,3 13,6	3,3 13,6	13,6		-5,7 6	9	ω	162	40	19	က	17	7	5	13	10	2	190	2,7
701,8 708,6 693,1 1,5 8,3 -5,7 6	693,1 1,5 8,3	1,5 8,3	8,3		-5,7 6	ဖ	4	78	15	4	5	4	က	0	6	15	2	197	5,5
696,1 706,9 686,7 -4,8 1,5 -11,1	686,7 -4,8 1,5	-4,8 1,5	1,5		-11,1	_	8'.	139	58	22	20	24	7	-	19	31	26	88	8,4
690,8 700,9 677,1 -7,6 -0,2 -19,8	677,1 -7,6 -0,2	-7,6 -0,2	-0,2		-19,8		7,2	126	90	16	16	17	13	7	15	30	30	111	10,8
699,4 707,0 689,2 -7,4 -5,2 -14,0	689,2 -7,4 -5,2	-7,4 -5,2	-5,2		-14,0	_	3,9	29	18	10	10	7	7	10	4	31	29	198	8,0
Jahr 694,7 710,2 669,8 -4,2 -1,7 -24,1 7,	669,8 -4,2 -1,7 -24,1	669,8 -4,2 -1,7 -24,1	-1,7 -24,1	-24,1	-24,1	_ '`	7,03	1709	312	229	167	232	108	28	171	294	229	1696	7,9

Statistische Jahres-Vergleichswerte der Normalperiode 1961-1990:

	-	uffdruck (hDa)	Da)	Lufft	-ufttemperatur		Bewöl-		Niederschlag	lag	Zahl	Zahl der Tage mit	e mit		Та	Tage		Sonnen- Windstär-	Windstär-
	3	יון מכון	a))	(Grad C)		kung in	(N+S)/2 T	kung in (N+S)/2 Tagesmax.	Tage	Schnee-	Nebel	Schnee- Nebel Sturm heitere trübe Frost	heitere	trübe	Frost	Eis	schein- ke Mittel*	ke Mittel*
	Mittel*	Max	Mittel* Max Min Mittel** Max	Mittel**	Max	Min	Zehntel	(mm)	(mm)	gr.gl.0.1mm fall***	fall***		gr.gl.8 Bft (<2/10) (>8/10) (Min<0) (Max<0) dauer (h)	(<2/10)	(>8/10)	(Min<0)	(Max<0)	dauer (h)	(m/s)
Мах		696,3 717,1		-4,5	-4,5 15,0		2,3	2045	102	523	219	318	146	9/	184	184 336	271	1982	9,2
Mittel	9'869	693,6 710,5	8,999	-5,8 11,4	11,4	-27,6	8,9	1621	42	203,5		164,6 270,6	37,2	38,6	159,3	315,6	244,8	1711,3	6,7
Min	6'069		654,4	-7,0		-34,3	6,1	1250		173	134	234	11	15	124	290	221	1511	4,9

* (7+14+19)/3

^{** (7+19+}max+min)/4

^{***} nur Schnee, kein gemischter Niederschlag

