Jahresbericht 2023

4. Zwischenbericht 31. Jänner 2023

GCW – Permafrost-Monitoring-Sonnblick

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Impressum

Titelbild:

Stefan Reisenhofer beim Auslesen der Temperaturlogger auf dem Nordostgrat am Hohen Sonnblick. Aufnahme von Wolfgang Rohrmoser am 26.08.2022.

Auftraggeber:

💳 Bundesministerium

Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

> Erstellt im Auftrag des Bundesministeriums für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie, Projektleitung Abteilung VI/1.

Herausgeber & Autor:

Departement Klimamonitoring und Kryosphäre

Mag. Stefan Reisenhofer stefan.reisenhofer@geosphere.at Hohe Warte 38 1190 Wien

Inhalt

Übersicht der Tätigkeiten im Jahr 2022
1. Einleitung und Hintergrund
1.1 Übersicht
1.2 Ziele des Monitorings
1.3 Arbeitspakete
2. Permafrost-Monitoring-Netzwerk Hoher Sonnblick und GCW
2.1 Global Cryosphere Watch
2.2 Datenmanagement10
2.3 Witterungsverlauf im hydrologischen Jahr 2021/2212
3. Auswertungen und vorläufige Ergebnisse16
3.1 Permafrostrelevante Messgrößen BTS, GST und NST10
3.2 Überwachung der Steinschlag- und Felssturzaktivitäten
3.2.1 Drohnenbasierte Photogrammetrie
3.2.2 Kontinuierliche Kluftmessungen – Crackmetermessungen
3.2.3 Seismisches Monitoring SeisRockHT
Literatur
Appendix A

Übersicht der Tätigkeiten im Jahr 2022

Geländeaufenthalte:

- BTS-Messungen vom 14. 16. März 2022: Erfassung der Basistemperatur der winterlichen Schneedecke - Bottom Temperature Surface (BTS) - an der Südflanke des Sonnblickgipfels sowie im Untersuchungsgebiet Wintergasse (siehe Abschnitt 3.1).
- (2) Wartung Temperaturlogger und Neuinstallation Datentransmitter vom 21. 25. August 2022: Alle Temperaturlogger im Untersuchungsgebiet Wintergasse und im Gebiet des Sonnblickgipfels wurden ausgelesen, gewartet und wieder ausgelegt(siehe Abschnitt 3.2).
- (3) Photogrammetrische UAV-Befliegung (Unmanned Aerial Vehicle) der Sonnblick-Nordwand am 24. August 2022 (siehe Abschnitt 3.2.1).
- (4) Wartung Crackmeterlogger am 24. August 2022: In Kooperation mit Stefan Mertl und Bergführer Wolfgang Rohrmoser wurden bei den Loggern die Software upgedatet und die Messstandorte in der Nordwand wurden aufgesucht um die Batterien zu tauschen (siehe Abschnitt 3.2.2).
- (5) Wartung des seismischen Netzwerkes am 17. August 2022 (siehe Abschnitt 3.2.3).

Öffentlichkeitswirksame Tätigkeiten:

Reisenhofer, S. (2022): Permafrost Monitoring Sonnblick Nordwand - Wissenschaftliche Aktivitäten 2022, Seite 58-59. Weblink: <u>https://www.sonnblick.net/ic-orig/Gr7FES7Fy7uWl/InhalteBroschueren/SBO-Broschuere 2022.pdf</u>

1. Einleitung und Hintergrund

1.1 Übersicht

In der österreichischen Klima- und Energiestrategie #mission2030, herausgegeben von den Bundesministerien *Nachhaltigkeit und Tourismus* und *Verkehr, Innovation und Technologie* im Mai 2018, wurde unter dem Kapitel Klimawandelanpassung das Auftauen der Permafrostböden als Konsequenz der Klimawandelauswirkungen genannt. Das globale Auftauen der Permafrostböden hat neben den zu erwartenden rückgekoppelten Auswirkungen auf das Klima auch zahlreiche Auswirkungen auf ökologische und wirtschaftliche Systeme. Für Österreich bedeutet das Tauen des Permafrostes im Gebirge konkret eine Vertiefung aktiver Felsschichten und damit ein steigendes Gefahrenpotential durch Hanginstabilitäten und Steinstürzen.

Das Projekt "Global Crosphere Watch – Permafrost-Monitoring-Sonnblick" sichert das Permafrost-Monitoring im Gebiet rund um den Hohen Sonnblick. Durch dieses Monitoring-Vorhaben wird das im Rahmen der Projekte PERSON1, PERSON2 und PERSON-GCW begonnene Permafrost-Monitoring fortgeführt, ausgebaut und gemäß internationalen Messstandards etabliert. Das Monitoring bildet eine wichtige Grundlage für die zukünftige Abschätzung von Naturgefahren im Zusammenhang mit der Permafrostdegradation.

Insbesondere soll der Sonnblick durch das Permafrost-Monitoring-Vorhaben die Führungsrolle im internationalen Beobachtungsnetzwerk GCW (Global Cryosphere Watch) stärken und seine internationale Sonderstellung als hochalpines Umwelt- und Klimaforschungsobservatorium im Bereich der Kryosphäre festigen.

1.2 Ziele des Monitorings

- a) Sonnblick als Supersite im Global Cryopshere Watch Netzwerk der Weltmeteorologisch Organisation (WMO) für den Bereich Permafrost stärken und ausbauen.
- b) Bestehende Zeitreihen permafrostwirksamer Messgrößen (BTS¹, GST² und NST³) im Sonnblickgebiet, die im Jahr 2006 begonnen wurden, fortzuführen.

¹ BTS: Bottom Temperature of Snow cover (Messung der Basistemperatur der Schneedecke)

² GST: Ground Surface Temperature (Messung der Bodenoberflächentemperatur)

³³3 NST: Near Surface Temperature (Messung der bodennahen Temperaturen)

- c) Überwachung der Steinschlag- und Felssturzaktivitäten im Bereich der Nordwand am Hohen Sonnblick mittels passiver Seismik (zeitliche Komponente) und drohnenbasierter Photogrammetrie (räumliche Komponente), im Hinblick auf die Standortsicherheit des Gebäudekomplexes sowie zur Verknüpfung des Gefährdungspotentials für Mensch und Tier in dieser und vergleichbaren Zonen Österreichs.
- d) Integrative Darstellung der Einzelergebnisse aller angewandten Messsysteme des Permafrost-Monitorings am Sonnblick (Bohrlochmessungen, Steinschlag- und Felssturzaktivitäten in Zusammenhang mit atmosphärischen Bedingungen, Einfluss der räumlichen Schneedeckenverteilung).
- e) Bei allen angewandten Messsystemen sind (1) eine hohe Datenquantität bei gleichzeitiger(2) hoher Datenqualität zu erreichen.

1.3 Arbeitspakete

Zur Umsetzung des Permafrost-Monitoring Projektes wurden vier Arbeitspakete (AP) definiert:

- AP1: Monitoring von BTS, GST und NST im Bereich des Untersuchungsgebietes Wintergasse und an der Südflanke des Hohen Sonnblicks
- Mit dem übergeordneten Ziel der Erreichung einer hohen Datenqualität bei gleichzeitiger hoher Datenquantität wird das bestehende Netzwerk an GST- und NST-Standorten zum Teil erneuert bzw. Messstandorte, die den genannten Zielsetzungen nicht entsprechen, aufgelöst.
- Fortführung der BTS-Messungen zur Ergänzung der GST-Messungen sowie der Ermittlung der Schneetiefen im Bereich der Messstandorte.
- Etablierung einer Datenprüfung in Anlehnung an GTN-P und GCW.
- Qualitätsgeprüfte Messwerte werden an das internationale Messprogramm von GTN-P übermittelt
- AP2: Überwachung der Steinschlag- und Felssturzaktivitäten in der Nordwand des Hohen Sonnblicks und Umgebung
- Das kontinuierliche seismische Monitoring (zeitliche Komponente) wird in Ergänzung mit der einmalig im Jahr durchgeführten drohnenbasierten Photogrammetrie (räumliche Komponente) zur Überwachung der Steinschlag- und Felssturzaktivitäten im Bereich der Sonnblick-Nordwand durchgeführt.

- Drohnenbasierte Photogrammetrie wird von der Firma GEORESEARCH durchgeführt und mit entsprechenden Analysetechniken aufbereitet.
- Korrelation der seismischen mit den räumlichen Daten wird durchgeführt, so dass neben eines chronologischen Katalogs der Steinschlag- bzw. Felssturzereignisse auch eine quantitative Abschätzung sowie die räumliche Lage des Ausbruchbereiches als Ergebnis zur Verfügung stehen.

AP3: Analyse der einzelnen Monitoringkomponenten

- Die laufenden Permafrostmessungen im Sonnblickgebiet (BTS, GST NST Messungen, Temperaturmessungen in den 20 m tiefen Bohrlöchern am Sonnblickgipfel, Steinschlagmonitoring) werden, gemeinsam mit den verschiedenen atmosphärischen Messungen, wie auch den räumlichen hoch aufgelösten Rasterdaten von täglicher bzw. monatlicher Lufttemperatur (ZAMG-Projekt SPARTACUS), Globalstrahlung (ZAMG-Projekt STRAHLGRID), sowie der Schneehöhenverteilung (ZAMG-Projekt SNOWGRID), einer alljährlichen Analyse unterzogen.
- AP4: Erstellung eines jährlichen Monitoringberichtes und Veröffentlichung der Ergebnisse auf der Website www.sonnblick.net

Die Ergebnisse aus AP4 werden zu einem jährlichen Monitoringbericht zusammengefasst und dem Auftraggeber in analoger wie auch digitaler Form übermittelt. Zusätzlich werden die Informationen auf der Website des Sonnblick Observatoriums öffentlich zugänglich gemacht.

2. Permafrost-Monitoring-Netzwerk Hoher Sonnblick und GCW

Das bestehende Permafrost-Monitoring-Netzwerk im Sonnblickgebiet ist in Abbildung 1 dargestellt. Den Kern des Permafrost-Monitoring-Netzwerkes bilden die drei 20 m tiefen Bohrlöcher an der Südflanke des Hohen Sonnblicks. Zur Erfassung der Bodenoberflächentemperatur (GST – Ground-Surface-Temperature) beziehungsweise der Temperatur im oberflächennahen Bereich (NST - Near-Surface-Temperature) sind Temperatursensoren an der Südflanke des Hohen Sonnblicks (siehe Abbildung 2) sowie in der Nord- bis Nordwest exponierten Wintergasse installiert. Des Weiteren finden Messungen der Basistemperatur der Schneedecke (BTS – Bottom Temperature of Snow cover) statt, bei der auch die Schneetiefe festgehalten wird.

Abbildung 1: Permafrost-Monitoring-Netzwerk im Gebiet des Hohen Sonnblicks.

Für die Überwachung der Steinschlag- und Felssturzaktivitäten in der Nordwand des Hohen Sonnblicks und Umgebung werden zum kontinuierlichen seismischen Monitoring (zeitliche Komponente) in Ergänzung mit der drohenbasierten Photogrammeterie (räumliche Komponente) durchgeführt. Zusätzlich wurden im Jahr 2021 in Anlehnung an das geotechnische Gutachten zur Beurteilung der Standsicherheit der Materialseilbahn und des Observatoriums vier Standorte mit sogenannten Crackmetern ausgestattet. Ziel dieser Crackmeter ist es, die Öffnungsweite der Klüfte zu beobachten und den Zeitpunkt des Öffnens festzustellen. Ein Überblick des Permafrost-Monitoring-Netzwerkes im Bereich des Sonnblickgipfels ist der Abbildung 2 zu entnehmen.

Abbildung 2: Lage der Temperaturmessstandorte im Gipfelbereich des Hohen Sonnblicks.

2.1 Global Cryosphere Watch

Im Jahr 2015 rief der 17. Weltmeteorologische Kongress das WMO-Programm Global Crysophere Watch (GCW) ins Leben und stimmte zu, dass es unmittelbare Priorität für die Erfassung der Kryosphäre und somit die Etablierung von CryoNet, eines der vier WIGOS (WMO Integrated Global Observing System) Komponentenbeobachtungsystemen gibt.

Das Sonnblick-Observatorium zählt zu einer der weltweit ersten "integrated sites" in der CryoNet-Stationsliste im Rahmen des GCW Netzwerkes. Der Status "integrated site" bedeutet,

dass an einem Standort mehrere Sphären einem Monitoring unterliegen. Die CryoNet-Stationen bilden dabei das Kernelement innerhalb des GCW-Netzwerkes und verfolgt das Ziel alle Komponenten der Kryosphäre – Schnee, Gletscher, Permafrost und ggf. Meereis – global koordiniert und standardisiert erfasst werden. Den Status "CryoNet" gilt es zu halten, um zukünftig Forschungsergebnisse im Bereich der österreichischen Alpen zu erhalten, sowie Mitsprache im internationalen Monitoring einzubringen.

Um den Status "CryoNet" zu erhalten, müssen eine Reihe von Voraussetzungen erfüllt sein, wie u.a. die Einhaltung bestimmter Messstandards, die nachweisliche Qualitätskontrolle der Messdaten und den freien Zugang zu den Daten über die entsprechenden Portale.

Diese Voraussetzungen garantieren ein gewisses Mindestmaß an Datenqualität und sind für die weitere Verwendung, wie der Gegenüberstellung bzw. Analyse von Messdaten unterschiedlicher Stationen oder der Verwendung dieser in Vorhersagemodellen für Wetter und Klima, unabdingbar. Das vorrangige Ziel bei allen angewandten Messsystemen ist die Erreichung (i) einer hohen Datenquantität bei gleichzeitiger (ii) hoher Datenqualität.

Ad (i) Datenquantität: Hierfür sind Messsysteme erforderlich, welche die über WLAN, Richtfunk bzw. GSM die Messdaten in naher Echtzeit übermitteln, damit Probleme etwaiger Art schnell erkannt und zeitnah behoben werden können.

Ad (ii) Datenqualität: Aus automatisierten near-realtime-Prüfungen, begleitet von täglich bzw. monatlich durchgeführten Validierungen, sollen homogene Datensätze resultieren, die neben der Veröffentlichung in Jahresberichten und auf der Webseite des Sonnblicks auch an internationale Datenzentren, wie der GTN-P Datenbank, pünktlich geliefert werden. Gleichzeitig müssen veraltete Messsysteme Schritt für Schritt ausgetauscht werden, um die Qualität der Messreihen zu gewährleisten

2.2 Datenmanagement

Für die Logger am Messstandort Nordwand wurde in den letzten Jahren aktiv an einer Datenmanagementstrategie und einer Umsetzung gearbeitet und ist nachstehend grob skizziert. Wichtig zu beachten ist, dass in den jeweiligen Datenbanken lediglich Rohdaten eingespielt werden. Weiterführende Überlegungen und Umsetzungen hinsichtlich der Einbindung von Metadaten sowie einer Datenqualitätskontrolle laufen. Die Logger am Messstandort Wintergasse werden jährlich manuell ausgelesen und auf einem internen ZAMG-Server gespeichert.

2.3 Witterungsverlauf im hydrologischen Jahr 2021/22

Abbildung 3: Lufttemperatur am Hohen Sonnblick im Jahr 2021 und 2022 und der saisonelle Detailausschnitt für das hydrologische Jahr Herbst 2021 bis Sommer 2022. Quelle: ZAMG KLIMAMONITORING Weblink:<u>https://www.zamg.ac.at/cms/de/klima-aktuell/klimamonitoring/</u>

		3600											
Station Sonnblick	nman das Niedarschlags für	3200 3000											
lahr 2021	ninen des Mederschlags für	2600											
Summo	Summo	2200						1					
Jahr 2021	lahre 1991-2020	1800 1600										-	-
1 917	3.053 mm	1400						-					
1.817 mm	2.053 mm	800											
		400											
		200 Jär	n Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	© ZAMG Dez
		3600											© ZAMG
Station Sonnblick		3200											
Aufsummierte Tagessur	nmen des Niederschlags für	2800 2600											
Jahr 2022		2400 2200											
Summe	Summe	2000 1800											
Jahr 2021	Jahre 1991-2020	1600								-			
1.536 mm	2.054 mm	1000				_			-				
		600 400											
		200	- martine										
		Jä	n Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
Station Compliak		900											© ZAMG
Aufsummierte Tagessur	nmen des Niederschlags für	800											
Herhst 2021	milen des Niedersemags für	700											
C	C	600											
Summe Horbet 2021	Summe Winter 1001 2020	400											
	Willer 1991-2020	300											
283 mm	495 mm	200											_
		100				-							
		Sep	10.	20.	0	kt	10.	20.	N	ov	10.	20.	
		1000											© ZAMG
Station Sonnblick		900											
Aufsummierte Tagessur	nmen des Niederschlags für	800											
Winter 2022		600											
Summe	Summe	500											
Winter 2021	Winter 1991-2020	400											-
437 mm	475 mm	300								1	-		
		200						_					
		100											
		Ďez	10.	20.		Jän	10.	20.		Feb	10.	20.	
		1400											© ZAMG
Station Sonnblick		1200											
Aufsummierte Tagessur	nmen des Niederschlags für	1100											
E	· · · · · · · · · · · · · · · · · · ·	900											
Fruhling 2022		000											
Summe	Summe	800 700											
Fruhling 2022 Summe Frühling 2022	Summe Frühling 1991-2020	800 700 600 500											
Frühling 2022 Summe Frühling 2022 288 mm	Summe Frühling 1991-2020 553 mm	800 700 600 500 400											
Frühling 2022 Summe Frühling 2022 288 mm	Summe Frühling 1991-2020 553 mm	800 700 600 500 400 300 200											
Frühling 2022 Summe Frühling 2022 288 mm	Summe Frühling 1991-2020 553 mm	800 700 600 500 400 300 200 100											
Frühling 2022 Summe Frühling 2022 288 mm	Summe Frühling 1991-2020 553 mm	800 700 600 500 400 300 200 100 Măr	10.	20.		Apr	10.	20.	M	ai	10.	20.	
Frühling 2022 Summe Frühling 2022 288 mm	Summe Frühling 1991-2020 553 mm	800 700 600 500 400 200 100 0 Mär 900	10.	20.		Apr	10.	20.	M	ai	10.	20.	© ZAMG
Frühling 2022 Summe Frühling 2022 288 mm	Summe Frühling 1991-2020 553 mm	800 700 600 500 200 100 0 Mär 900 800	10.	20.		Apr	10.	20.	M	ai	10.	20.	© ZAMG
Frühling 2022 Summe Frühling 2022 288 mm Station Sonnblick Aufsummierte Tagessur	Summe Frühling 1991-2020 553 mm mmen des Niederschlags für	800 700 600 500 400 200 100 Mar 900 800 700	10.	20.		Apr	10.	20.	M	ai	10.	20.	© ZAM6
Frühling 2022 Summe Frühling 2022 288 mm Station Sonnblick Aufsummierte Tagessur Sommer 2022	Summe Frühling 1991-2020 553 mm mmen des Niederschlags für	800 700 600 500 400 200 100 Mar 900 800 700 600	10.	20.		Apr	10.	20.	M	ai	10.	20.	© ZAM6
Fruhling 2022 Summe Frühling 2022 288 mm Station Sonnblick Aufsummierte Tagessur Sommer 2022 Summe	Summe Frühling 1991-2020 553 mm mmen des Niederschlags für Summe	800 700 600 500 400 200 100 00 Mar 900 800 700 600 500	10.	20.		Apr	10.	20.	M	ai	10.	20.	©ZAMG
Fruhing 2022 Summe Frühling 2022 288 mm Station Sonnblick Aufsummierte Tagessur Sommer 2022 Summe Sommer 2022	Summe Frühling 1991-2020 553 mm mmen des Niederschlags für Summe Frühling 1991-2020	800 700 600 500 400 200 100 00 Mar 900 800 700 600 500 400	10.	20.	,	Apr	10.	20.	M	ai	10.	20.	© ZAMG
Fruhing 2022 Summe Frühling 2022 288 mm Station Sonnblick Aufsummierte Tagessur Sommer 2022 Summe Sommer 2022 495 mm	Summe Frühling 1991-2020 553 mm mmen des Niederschlags für Summe Frühling 1991-2020 527 mm	800 700 600 500 400 200 100 Mar 900 800 700 600 500 400 300	10.	20.		Apr	10.	20.	M	ai	10.	20.	© ZAM6

Abbildung 7: Niederschlagssummen am Hohen Sonnblick im Jahr 2021 und 2022 und der saisonelle Detailausschnitt für das hydrologische Jahr Herbst 2021 bis Sommer 2022. Quelle: ZAMG KLIMAMONITORING Weblink:<u>https://www.zamg.ac.at/cms/de/klima/klima-aktuell/klimamonitoring/</u>

Jul

10.

Aug

10.

9

Abbildung 6: Verlauf der Gesamtschneehöhe im Zeitraum 2014-2020 im Vergleich zum langjährigen monatlichen Mittel 1981-2010. Zusätzlich sind die täglichen Neuschneesummen dargestellt

Temperaturkenntage seit dem Jahr 2000

Abbildung 7: Abweichung der Eis-, Frost- und Frostwechseltage seit dem hydrologischen Jahr 2000/01 zum langjährigen Mittel 1981-2010.

Die aus der Temperatur abgeleitete Kenngrößen Eistage (Tage mit einer Höchsttemperatur von unter 0 °C), Frosttage (Tage mit einer Tiefsttemperatur von unter 0 °C) und Frostwechseltage (Tage mit einer Tiefsttemperatur unter und einer Höchsttemperatur über 0° C) dienen gewissermaßen dazu, die "Kälte" im Hochgebirge eines ganzen Jahres zu ermitteln. Die

Parameter werden mit der Klimaperiode von 1981-2010 verglichen, um Anomalien bzw. Singularitäten zu identifizieren. Am Sonnblick werden im langjährigen Mittel 1981-2010 230 Eistage und 301 Frosttage gezählt, und an 71 Tagen wird ein Frostwechsel verzeichnet. Eine Zunahme der Frostwechseltage geht mit einer Abnahme der Eistage einher, wie es in den hydrologischen Jahren 2001/02, 2004/05, 2006/07, 2010/11, 2013/14, 2015/16, 2017/18, 2019/20 und auch 2020/21 zu beobachten ist. Und eine Abnahme an Frostwechseltagen ist durch die generell höheren Lufttemperaturen am Hohen Sonnblick zurückzuführen.

3. Auswertungen und vorläufige Ergebnisse

In diesem Kapitel werden die im Rahmen des Projektes GCW - Permafrost-Monitoring-Sonnblick durchgeführten Messungen präsentiert, näher erläutert und die Ergebnisse der gewonnenen Daten seit dem Messjahr 2013/14 präsentiert.

3.1 Permafrostrelevante Messgrößen BTS, GST und NST

Die Bodenoberflächentemperatur (Ground Surface Temperatur – GST) ist definiert als die Oberflächen- bzw. oberflächennahe Temperatur des Untergrundes, gemessen in den obersten Zentimeter des Bodens. Die GST ist abhängig von der Energiebilanz der Oberfläche wie auch den standortspezifischen Charakteristika, wie Vegetationsbedeckung, Oberflächenrauigkeit bzw. farbe und Feuchtegehalt (Klene et al., 2001). Das GST-Monitoring trägt zum Verständnis der standortspezifischen Energie-und Wärmetransporte bei.

Für das Auftreten von Permafrost spielt die Schneedecke eine zentrale Rolle, da sie den Boden vom Einfluss der Atmosphäre isoliert und durch ihre hohe Albedo einen großen Teil der Sonnenenergie reflektiert. Diese Eigenschaften wirken sich zu unterschiedlichen Jahreszeiten anders aus. In einem schneereichen Winter wird der Boden durch die Schneedecke vor eindringender kalter Luft geschützt (wärmender Effekt). Im Frühjahr und Sommer wird der Boden, der noch immer unter Schnee liegt, vor warmer Luft und Strahlung abgeschirmt (kühlender Effekt). Beginnt ein Winter kalt und schneearm, sind das die besten Bedingungen für Permafrost, da der Boden stark auskühlen kann. Bildet sich im Verlauf des Winters eine dicke und sich lange in das Frühjahr haltende Schneedecke, sind die perfekten Bedingungen für Permafrost gegeben. Ist die Schneedecke mächtig genug (80 – 100 cm) um den Untergrund von atmosphärischen Einflüssen abzuschirmen, stellt sich eine konstante Temperatur an der Basis der Schneedecke ein. Haeberli (1975) hat eine empirische Faustregel für die Interpretation der Basistemperatur der Schneedecke (BTS) entwickelt. Liegt die BTS unter -3° C verbirgt sich im Untergrund wahrscheinlich Permafrost. Zwischen -3° C und -2° C liegt der Unsicherheitsbereich in dem möglicherweise Permafrost auftritt. Bei Temperaturen größer -2° C ist der Boden wahrscheinlich nicht das ganze Jahr über gefroren (siehe Abbildung 8). Eine umfassende Interpretation der BTS-Messungen wird im Endbericht des Projektes im Jänner 2024 erfolgen. Eine kurze Erläuterung zu den bisher vorliegenden BTS-Messungen findet sich im Anschluss:

- Die BTS-Messungen zeigen, dass die Höhenabhängigkeit der Bodentemperatur von orografischen Einflüssen überlagert wird. Dies zeigt sich vor allem im Höhenbereich zwischen 2600 und 2650 Meter, wo viele nordexponierte Hangbereiche in der Wintergasse zu finden sind und die Bodentemperaturen oftmals kühler ausfallen, als in den Höhenbereichen darüber. Des Weiteren zeigen die Messungen in der obersten Höhenstufe im Untersuchungsgebiet Wintergasse mit dem relativ ebenen Gelände und leicht westexponierten Hängen zumeist höhere Bodentemperaturen auf, als in den darunterliegen Höhenstufen.
- Der Höhenbereich zwischen 3040 und 3100 Meter zeigen die Messungen an der Südflanke des Hohen Sonnblicks und weisen der Höhenlage entsprechend auch über alle Messjahre die niedrigsten Bodentemperaturen mit Werten um die -4 bis -5° C.
- Ausnahmejahr 2020: In diesem Jahr konnten die Feldarbeiten aufgrund der Covid-19 Beschränkungen und der damit zusammenhängenden Lockdown-Maßnahmen nicht wie geplant Anfang März stattfinden, sondern wurden erst zwei Monate später vom 6. – 7. Mai durchgeführt. Die überdurchschnittliche Sonnenscheindauer sowie die überdurchschnittlichen Lufttemperaturen, vor allem in der zweiten Märzhälfte und im Laufe des Aprils, führten dazu, dass Anfang Mai zum Zeitpunkt der Messarbeiten die Schneedecke bereits isotherm war. D.h. die Bodentemperatur lag an allen Messstandorten der unterschiedlichen Höhenbereiche nahe der Nullgradgrenze.

Abbildung 8: Mittlere BTS und mittlere Schneetiefe nach Höhenstufen (numerischer Wert im Balken steht für die Anzahl an Messungen, die für jede Höhenstufe zur Verfügung standen).

Auf Basis der GST-Messungen werden neben der mittleren jährlichen Bodentemperatur (MAGST _ mean annual ground surface temperatur) und der winterlichen Gleichgewichtstemperatur (WEqt – winter equlibrium temperatur) auch der Bodengefrierindex (GFI – ground freezing index) sowie der Schmelzgradindex (THI – thawing index) berechnet. Diese Werte drücken zum einen das Auskühlen und zum anderen den Wärmeeintrag in den Boden aus. Auf Basis der jährlichen GFI und THI-Werte lassen sich die einzelnen Haushaltsjahre untereinander vergleichen (siehe Abbildung 5) und lassen wichtige Erkenntnisse im Hinblick auf lokalspezifische Wärmeeinträge zu.

Die GST-Messungen in feinem bis grobblockigem Oberflächenmaterial wurden im Messjahr 2021/22 im Untersuchungsgebiet Wintergasse an 29 Standorten weitergeführt. Wie bereits im Vorjahr traten auch im Jahr 2021/22 extrem viele Defekte bei den Temperturloggern auf, so dass bei 16 Datenloggern keine Messungen zur Verfügung stehen und lediglich bei 13 Standorten Temperaturmessungen vorliegen. Die vielen Defekten sind auf Wassereintritte ins Loggergehäuse, defekte Batterien oder auch die bereits in die Jahre gekommenen Logger verantwortlich. Aus diesem Grund wurden bereits im Jahr 2021 neue Temperaturlogger (iButton) angeschaft, um an Standorten mit älteren Loggern eine Doppelbelegung zu ermöglichen, und so bei Ausfällen Datenlücken zu vermeiden.

Abbildung 9: Bodengefrierindex (GFI) und Schmelzgradindex (THI) – tägliche negative Gradtagssumme und tägliche positive Gradtagssummen- der GST-Standorte im Untersuchungsgebiet Wintergasse.

Impressionen Feldmessungen im Jahr 2022

Foto links: winterlicher Geländeeinsatz Anfang Juli: Bergführer Wolgang Rohrmoser (links) bereitet sich zum Batteriewechsel der Logger in der Nordwand vor.

Fotos rechts: Cheftechniker Simon Feigl beim Anbringen eines Datentransmitters.

Foto links: Anton Neureiter wird im Untersuchungsgebiet Wintergasse von einer Schafsherde überrascht. Foto rechts: Anton Neureiter bei beim Einmessen der Messstandorte mittels DGPS.

Foto links: Blickrichtung für die Laserscanneraufnahme des Hohen Sonnblicks.

Foto rechts: Geodät Matthias Rathofer mit seinem Team beim Aufbau des Laserscanners.

						Data gaps	Data gaps	MAGST	MAGST	MAGST	MAGST	WEqt	WEqt	WEqt	WEqt	GFI	GFI	GFI	GFI	THI	THI	THI	THI
Location	ELE [m]	Slope [°]	Aspect	Sensor	Substrate	Oct-Aug [%] 330d* = 100%	Oct-Apr [%] 212 d = 100%	2018/19	2019/20	2020/21	2021/22	2018/19	2019/20	2020/21	2021/22	2018/19	2019/20	2020/21	2021/22	2018/19	2019/20	2020/21	2021/22
w32	2675	30	northwest	Onset	very coarse debris	0	0	0.22	0.5	-0.05	1.04	-2.71	-1.45	-2.04	-1.97	-411	-153	-387	-174	492	336	369	515
w39	2739	19	northwest	UTL	bedrock	0	0	-0.7	-0.4	-0.57	-1.57	ND	ND	-2.19	ND	-753	-573	-571	-943	498	426	362	430
w40	2719	15	northwest	UTL	coarse debris	100	100	0.53	0.59	NA	NA	-1.44	-0.53	NA	NA	-210	-60	NA	NA	403	255	NA	NA
w41	2685	33	northwest	UTL	debris	0	0	-0.31	0.36	0.15	-0.56	ND	-3.37	-2.06	ND	-730	-403	-386	-726	616	535	440	544
w42	2629	26	East	Onset	coarse debris	100	100	-0.32	NA	NA	NA	-2.85	NA	NA	NA	-401	NA	NA	NA	296	NA	NA	NA
w43	2637	42	north	Onset	bedrock	0	0	-0.37	0.4	-0.58	-0.6	ND	ND	ND	ND	-1044	-761	-987	-1005	909	906	774	810
w45a	2591	24	northeast	UTL	bedrock	0	0	0.73	1.08	0.56	1.01	-0.77	-0.53	-0.53	-0.73	-196	-129	-148	-168	462	525	354	497
w46	2598	12	northeast	i-button	bedrock	0	0	-0.5	5.13	0.19	0.67	ND	NA	-1.74	-4.04	-574	NA	-342	-472	410	185	413	690
w47	2680	18	west	UTL	organic/debris	0	0	-1.37	-0.66	-1.15	-1.73	ND	ND	ND	ND	-1263	-933	-970	-1263	764	691	551	697
w48	2699	22	southwest	i-button	fine-grained material	100	100	-0.82	NA	NA	NA	ND	NA	NA	NA	-762	NA	NA	NA	490	NA	NA	NA
w49	2619	27	west	UTL	coarse debris	100	100	0.47	0.02	NA	NA	-1.38	-0.65	NA	NA	-279	-92	NA	NA	450	99	NA	NA
w50	2701	21	northwest	UTL	weathered bedrock	0	0	0.58	0.48	0.7	0.29	-2.48	-3.4	-1.03	-3.19	-327	-317	-134	-366	538	491	391	460
w51	2704	28	norhtwest	UTL	coarse debris	0	0	-0.04	0.34	0.15	0.26	-1.87	-2.17	-1.09	-2.09	-257	-195	-173	-289	242	320	227	375
w52	2687	35	north	Onset	coarse debris	100	100	0.33	0.34	NA	NA	-2.61	-1.03	NA	NA	-399	-137	NA	NA	519	250	NA	NA
w53	2670	23	west	Onset	coarse debris	0	0	0.3	1.23	0.55	0.18	-3.39	-1.46	-1.06	ND	-516	-147	-226	-590	625	597	428	650
w54	2706	15	northwest	UTL	coarse debris	100	100	-0.03	NA	NA	NA	-3.33	NA	NA	NA	-499	NA	NA	NA	489	NA	NA	NA
w55	2701	23	northwest	UTL	very coarse debris	0	0	0.79	-0.13	-0.55	-1.83	-0.4	-2.45	-2.14	ND	-60	-374	-428	-1065	349	327	227	468
w56	2719	14	norht	Onset	debirs	100	100	-1.66	-0.12	NA	NA	ND	ND	NA	NA	-1103	-591	NA	NA	498	552	NA	NA
w57	2708	6	northwest	Onset	debris/soil	100	100	-0.21	-0.03	NA	NA	ND	-0.44	NA	NA	-869	-55	NA	NA	793	46	NA	0
w58	2581	19	northwest	UTL	debris	100	100	0.58	NA	NA	NA	-0.47	NA	NA	NA	-94	NA	NA	NA	287	NA	NA	NA
w59	2725	22	northwest	UTL	debris	0	0	0.07	2.9	0.55	0.41	-0.76	NA	-0.31	-2.36	-175	NA	-80	-281	197	104	279	413
w60	2730	13	west	UTL	debris/bedrock	100	0	NA	NA	2.98	1.01	NA	NA	NA	-0.73	NA	NA	-1	-168	NA	NA	129	496
w65	2614	14	northwest	i-button	bedrock 2cm depth	100	100	0.27	NA	NA	NA	-0.75	NA	NA	NA	-150	NA	-60	-103	578	172	137	501
w68	2691	68	west	i-button	debris	100	100	1.25	NA	NA	NA	-0.93	NA	NA	NA	-106	NA	NA	NA	521	NA	NA	NA
w69	2690	19	northwest	i-button	debris	100	100	-0.79	NA	NA	NA	ND	NA	NA	NA	-826	NA	NA	NA	563	NA	NA	NA
w70	2689	13	west	i-button	debris	100	100	NA															
w74	2622	25	west	i-button	debris	100	100	NA															
w75	2676	17	northwest	i-button	debris	100	100	NA															
w76	2717	19	northwest	i-button	debris	100	100	NA															

Tabelle 1: Zusammenfassung der GST-Standorte im Untersuchungsgebiet Wintergasse (blaue Markierung: Permafrost wahrscheinlich; gelbe Markierung: Permafrost möglich; rote Markierung: Permafrost unwahrscheinlich).

*Auslesung erfolgte

NA – aufgrund von Datenlücken nicht berechnet *ND –winter equilibrium temperature (WEqT) wurde nicht berechnet, da am jeweiligen Standort für das Erreichen der Gleichgewichtstemperatur zu wenig Schnee lag. am 25. August – 365 Tage weniger 34 Tage = 330 Tage

In *Tabelle* 1 findet sich eine Zusammenfassung der GST-Messstandorte mit Angabe der standortspezifischen Geländeparameter, der mittleren jährlichen Bodentemperatur (MAGST), der mittleren winterlichen Gleichgewichtstemperatur (WEqT) sowie der Bodengefrier- und Schmelzgradindex

Die mittlere jährliche Bodentemperatur liegt über den gesamten Untersuchungszeitraum bei fünf Messstandorten unter O° C und lässt somit auf Permafrostbedingungen schließen (siehe die blau markierten Werte in Tabelle 1 für das Messjahr 2021/22 bzw. im Appendix für die Jahre 2013/14-2017/18). Prinzipiell sind den Werten, die auf den ganzjährigen kontinuierlichen Messungen beruhen eine höhere Validität zuzuschreiben. Bei acht Standorten liegen die Werte der MAGST > 0° C und lassen somit auf keine Permafrostbedingungen schließen. Dies wird auch durch die Werte der winterlichen Gleichgewichtstemperatur an diesen Standorten bestätigt mit Temperaturen > -3°C. Beim Vergleich des Schmelzgradindexes in Abbildung 9 zeigt sich ein sehr gegensätzliches Bild. Die Winter zeigen vor allem in den Messjahren 2016/17, 2017/18 und 2018/19 wesentlich höhere Kälteeinträge in den Boden als in den Haushaltsjahren 2013/14 bis 2015/16 zu beobachten sind. Das frühe Ausapern wird in den Jahren 2014/15, 2016/17 und vor allem auch 2018/19 durch die hohen positiven Indexwerte angezeigt und führte jeweils zu den höchsten Wärmeeinträgen im gesamten Untersuchungszeitraum. Die hohen Wärmeinträge der Jahre 2014/15 und 2016/17 sind auf weit unterdurchschnittliche Winter mit geringen Schneehöhen zurückzuführen. Im Vergleich dazu weisen die Jahre 2013/14 und 2015/16 mit Schneehöhen, die dem Mittel entsprechen wesentlich niedrigere Werte auf. Im abgelaufen Messjahr 2021/22 wurden weit unter dem langjährigen Mittel liegende Gesamtschneehöhenverzeichnet. Im Herbst 2021 und im Frühjahr 2022 wurden etwa die Hälfte des langjährigen Niederschlagsmittels erreicht. Durch die sehr geringen Schneemächtigkeiten war ein sehr frühes Ausapern die Folge und führen an vielen Messstandorten zu den höchsten Wärmeeinträgeen seit Beginn der Permafrostmessungen im Untersuchungsgebiet Wintergasse.

Im Zuge der Erweiterung der Messstandorte im Bereich der Nordwand am Hohen Sonnblick wurden seit 2016 in Summe acht ein Meter tiefe Bohrlöcher mit jeweils sechs Temperatursensoren in einer Tiefe von 0 cm, -20 cm, -40 cm, -60 cm, -80 cm und -100 cm installiert (siehe obige Abbildung). Zwei dieser Messstandorte wurden im August 2021 im nordwestexponierten Bereich der Gipfelpyramide eingerichtet. Beide Standorte befinden sich etwa 20 bis 25 Meter unterhalb der Zittelhausterrasse. Standort "nord-bl8" umfasst einen Datentransmitter (D20212) mit direkter Anbindung des Temperaturstrings und am Standort "nord-bl7" ist ein MLog5W in einem modifizierten Kunststoffgehäuse, wie bereits die im Jahr angeschafften Logger, angebracht. Dieses Gehäuse besitzt den Vorteil einer Außenantenne mit größerer Übertragungsreichweite und stabilerer Übertragung, und macht eine Wartung (Batterienwechsel) vor Ort möglich, was den Arbeitsaufwand erheblich mindert.

Sensor depth LON [°] LAT [°] ELE Slope Borehole Substrate Standort & Aspect Sensor measuring depth [cm] Loggername [m] [°] [cm] start sbk-nord 1 100, 80, 60, 12.957967 47.054713 3080 80 north 100 M-Log5W bedrock Aug. 2016 A53AF0 40, 20, 1 sbk-nord 2 100, 80, 60, 12.958411 47.054717 3085 75 north 100 M-Log5W bedrock Aug. 2018 A53AEE 40, 20, 1 sbk-nord 3 100, 80, 60, 12.958501 47.054732 3080 75 northeast 100 M-Log5W bedrock Aug. 2018 A53AEF 40, 20, 1 sbk-nord 4 100, 80, 60, Aug. 2019 12.958533 47.054409 3085 85 east 100 M-Log5W bedrock 40.20.1 A53ADD 100, 80, 60, sbk-nord 5 12.958405 47.05461 3095 90 northeast 100 M-Log5W bedrock Aug. 2019 A53ADF 40.20.1 100, 80, 60, sbk-nord6 12.958564 47.054793 3065 75 northeast 100 M-Log5W bedrock Aug. 2019 A53ADC 40.20.1 sbk-nord7 100, 80, 60, 12.957706 47.054635 3076 85 west 100 M-Log5W bedrock Aug. 2021 40, 20, 0 D10212 100, 80, 60, sbk-nord8 12.957748 47.054635 3071 85 Aug. 2021 west 100 M-Log5W bedrock A53D85 40.20.0 20, 40, 60, 80 Hobbo 4 southeast 12.9593 47.0537 3055 17 80 debri Sept. 2014 sbk-bl1 Kanal 20, 40 Hobbo 4 12.9581 47.0536 Sept. 2014 sbk-bl2 3058 29 southwest 40 debris Kanal 76, 56, 36, 16, sbk-bl3 12.9581 47.0535 3068 20 southwest 76 MLog 5 bedrock Aug. 2015 surface 80, 60, 40, 20, Aug. 2015 sbk-bl4 12,9578 47.0538 3068 39 southwest 80 bedorck MLog 5 1

Tabelle 2: Zusammenfassung der aktuell vorhandenen Bohrlöcher im Bereich des Gipfels Hoher Sonnblick.

Die Datentransmitter sorgen für die automatische Übertragung der stündlich aufgezeichneten Temperaturdaten. Dieser scannt jede Stunde die aktuellen Daten des Loggers und überträgt diese alle sechs Stunden per GSM an einen Internetserver. Die limitierte Reichweite bei der Datenübermittlung zwischen Temperaturlogger und Datentransmitter bedingt eine gleichmäßige räumliche Verteilung der Transmitter um die Gipfelpyramide des Hohen Sonnblicks, um eine stabile Funkverbindung zu allen Messstandorten zu garantieren. Leider liegt seit September 2021 beim Datentransmitter A53CFD ein technisches Problem vor, sodass derzeit nur sechs der acht Logger aktuelle Messwerte übermitteln. Aktuelle Messwerte von vier dieser Standorte sind unter <u>https://www.sonnblick.net/de/daten/aktuelle-messdaten/permafrost/</u> abrufbar (siehe Abbildung 6).

Instandhaltungs- und Wartungsarbeiten im Projektjahr 2022:

Energieversorgungsprobleme bei den Loggern der Temperaturmessstandorte führten bereits Anfang Juli zu einem außerplanmäßigen Geländeeinsatz bei dem alle acht Standorte aufgesucht und die Logger mit neuen Batterien ausgestattet wurden. <u>Live-Messwerte</u> von vier Standorten sind über die Website des Sonnblicks abrufbar. Bei den anderen vier Temperaturmessstandorten führen Übertragungsfehler immer wieder zu Datenlücken, die aufgrund schwankender Signalstärken durch äußere Witterungsbedingungen, wie u.a. Starkwinde, Anraum, Starkregen, zurückzuführen sind. Für eine verbesserte Datenübertragung ist ein weiterer Ausbau von Datentransmittern notwendig, um eine stabile Signalstärke zwischen Transmitter und Logger zu erreichen Die Umsetzung ist im Jahr 2023 geplant.

Abbildung 10: Webdarstellung des Temperaturverlaufs von vier Messstandorten in der Nordwand und Sonnblick Lufttemperatur und Niederschlagssummen der letzten drei Monate.

3.2 Überwachung der Steinschlag- und Felssturzaktivitäten

Nachstehender Abschnitt wurde von Dr. Ingo Hartmeyer, Robert Delleske MSc., Dr. Markus Keuschnig von Georesearch im Rahmen der Werkvertragsvereinbarung zur Überwachung der Steinschlag- und Felssturzaktivitäten in der Sonnblick-Nordwand erstellt.

3.2.1 Drohnenbasierte Photogrammetrie

3.2.1.1 Datenerfassung

Die Photogrammetrie-Befliegungen der Nordwand des Rauriser Sonnblicks mittels UAV (Unmanned Aerial Vehicle) werden seit dem Jahr 2019 einmal jährlich immer am Ende der Ablationsperiode durchgeführt. Auf Grund der schneefreien Bedingungen und der maximalen glazialen Ausaperung herrschen zu diesem Zeitpunkt optimale Bedingungen hinsichtlich der Detektion von Felssturz-Ablösebereichen vor. Die erstmalige Befliegung erfolgte am 26.08.2019. Folgebefliegungen wurden am 05.09.2020, 19.08.2021 und 25.08.2022 durchgeführt.

Zur exakten Referenzierung der Drohnenaufnahmen wurden vor der ersten UAV-Befliegung insgesamt zehn Bodenkontrollpunkte (GCPs) am Wandfuß bzw. im Gratbereich installiert (Abbildung 11). Für weitere Details zur Datenerfassung in den Jahren 2019 bis 2021 wird auf die Vorjahresberichte verwiesen. Die Eckdaten der im Jahr 2022 durchgeführten UAV-Befliegung werden im Anschluss beschrieben.

Die Befliegung am 25.08.2022 orientierte sich an den Parametern der Vorjahresbefliegung und wurde erneut mit einem UAV des Typs DJI Phantom 4 Pro mit PPK-GPS-Erweiterung durchgeführt. Dem Aktionsradius der Drohne sowie den flugrechtlichen Rahmenbedingungen entsprechend wurden auch im Jahr 2022 wieder zwei unterschiedliche Drohnenstartpunkte gewählt: der Gratbereich östlich des Observatoriums und der Fußbereich der Sonnblick-Nordwand (siehe Abbildung 11).

Der Gesamtmission lagen erneut sechs Flugpläne mit einer Gesamtstrecke von ca. 30 km zu Grunde. Zur Vermeidung von Abschattungen und zur Gewährleistung eines lückenlosen Modells der gesamten untersuchten Flanke, erfolgten die Aufnahmen sowohl im Nadir als auch im rechten Winkel zur (mittleren) Geländeneigung. Die Zielauflösung betrug dabei 5 cm. Wie in den Vorjahren deckte das beflogene Gebiet eine Wandfläche von rund 1,2 km² in Höhenlagen zwischen 2 200 und 3 100 m üNN ab. Während der Mission wurden über 700 Bilder im

Rohdatenformat aufgenommen. Gleichmäßige Lichtverhältnisse während der Dauer der Befliegung ermöglichten eine sehr hohe Datenqualität.

Abbildung 11: Lage der insgesamt zehn Bodenkontrollpunkte im Untersuchungsgebiet (Installation im Sommer 2019). Das photogrammetrisch beflogene Untersuchungsgebiet (AOI) ist rot umrahmt. Die Startpunkte der Befliegungen befinden sich im Wandfußbereich ("Start Low") und am Observatorium ("Start Top").

3.2.1.2 Auswertung der Photogrammetriedaten

Im Rahmen der Auswertung wurden die erfassten RAW-Dateien mit Hilfe eines RAW-Konverters optimiert und als JPG ausgespielt. Dadurch werden sowohl in hellen als auch in dunklen Bereichen die erforderlichen Kontraste erzielt, um ein homogenes, flächendeckendes Modell zu generieren.

Die Prozessierung erfolgte wie in den Vorjahren mittels der Software Pix4d. Im Gegensatz zur Vorjahresbefliegung, die durch wechselnde Lichtverhältnisse negativ beeinflusst wurde, herrschte bei der diesjährigen Befliegung wieder eine weitgehend einheitlich Beleuchtung vor. Die resultierende Punkwolke weist dementsprechend eine hohe Datendichte (rund 80 Millionen Punkte) und präzise repräsentierte Oberflächen auf.

3.2.1.3. Identifizierung von Steinschlagablösebereichen (Multitemporale Differenzanalyse)

Die Identifizierung der Steinschlag-/Felssturzablösebereiche folgte dem gleichen methodischen Ablauf wie in den Vorjahresberichten und ermöglicht daher eine direkte Vergleichbarkeit. Der Analyseablauf wird im Anschluss in Grundzügen beschrieben, für weitere Details wird auf die Publikationen von Hartmeyer et al. 2020a und 2020b verwiesen. Voraussetzung für die Differenzanalyse (Volumenanalyse) ist der exakte räumliche Abgleich der Punktwolken, welcher im Rahmen der vorliegenden Untersuchung mit Hilfe eines ICP-Algorithmus durchgeführt wurde, in dessen Rahmen die Abstände zwischen den Punktwolken schrittweise minimiert wurden (Chen & Medioni 1992, Besl & McKay 1992). Veränderte Oberflächen (z.B. Gletscherflächen, Steinschlagablösebereiche) werden durch die Ausschlusskriterien des ICP-Algorithmus nicht berücksichtigt und verringern somit nicht die Qualität des Oberflächenabgleichs.

Die an den Oberflächenabgleich anschließende multitemporale Differenzanalyse wurde mit der frei verfügbaren Software CloudCompare durchgeführt. Das Plugin M3C2 erlaubt dabei orthogonale Differenzberechnungen in komplexem Terrain und ist somit für die Bestimmung von Oberflächenveränderungen in geometrisch heterogenen, stark reliefierten Felswänden gut geeignet (Lague et al. 2013). Im Rahmen der Analyse werden in Abhängigkeit von der lokalen Oberflächenrauhigkeit Normalvektoren bestimmt, entlang derer im Anschluss Distanzmessungen durchgeführt werden. Der M3C2-Algorithmus operiert direkt auf den verglichenen Punktwolken (ohne Meshing/Gridding), erlaubt die Berechnung lokaler Konfidenzintervalle (Unsicherheiten) und ist besonders gut für den Vergleich von Punktwolken mit variierender Datenqualität (Punktdichte).

Im Anschluss an die Identifizierung der Ablösebereiche wurden deren Volumina berechnet. Hierbei wurden für jeden Ablösebereich lokale Grids erstellt, deren Einzelzellen nachfolgend aggregiert wurden. Zusätzlich zu den Volumina wurden für jeden identifizierten Ablösebereich die mittlere Neigung, der mittlere Azimuthwinkel (Exposition) sowie die maximale Versagenstiefe berechnet. geeignet.

3.2.1.4 Ergebnisse

Im Rahmen der Differenzanalyse zwischen den am 19.08.2021 und am 25.08.2022 erhobenen Photogrammetriedaten wurden (erneut) 21 Ablösebereiche mit Versagenstiefen 2 1 m identifiziert (Tabelle 3, Abbildung 12). Die Versagenstiefe beschreibt dabei die maximale (euklidische) Distanz zwischen der Geländeoberfläche vor und nach dem Ereignis.

Aus der Differenzanalyse sticht eine signifikante Felsablösung im westlichen Wandbereich hervor (ID 2021-2022_01 in Tabelle 2). Augen- bzw. Ohrenzeugenberichte belegen ein großes Einzelereignis am 05.10.2021 (18:30), welches sowohl am Sonnblick-Observatorium als auch am Ammererhof (Kolm-Saigurn) hör-, spür- bzw. sichtbar war1. Die identifizierte Fläche repräsentiert somit aller Voraussicht nach einen als Einzelereignis abgegangenen Felssturz. Das große Volumen und die erhebliche Sturzhöhe begünstigten die Ausbildung einer langen Transportbahn, die bis in die unmittelbare Nähe des Pilatussees reichte. Die horizontale Auslaufweite des Ereignisses vom 05.10.2021 beträgt somit 600-700 m (Abbildung 13).

Der Ablösebereich vom 05.10.2021 liegt unmittelbar neben dem Ablösebereich des Felssturzes vom 30.08.2020 (15 570 m³; ID 2019-2020_01, siehe Differenzanalyse 2019/20) bzw. zeigt eine geringfügige räumliche Überlappung mit diesem (Abbildung 14, Abbildung 15). Hinsichtlich seines Volumens übertrifft der Felssturz vom 05.10.2021 das Ereignis vom 30.08.2022 um rund 8 000 m³ und repräsentiert damit das mit Abstand größte Ereignis seit Beginn der Befliegungen im Jahr 2019 bzw. seit den ersten terrestrischen Laserscan-Messungen im Jahr 2015.

Ein markantes, leicht nach Nordwesten abfallendes Felsband auf einer Seehöhe von rund 2700 m üNN bildete (wie schon beim Ereignis vom 30.08.2020) die Unterkante des Ablösebereichs vom 05.10.2021. Die Ablösung der 23 510 m³ großen Kubatur erfolgte zum größten Teil entlang der selben ausgeprägten, in etwa vertikal stehenden Kluftschar wie beim Felssturz vom 30.08.2020 und erklärt damit die fast identischen maximalen Versagenstiefen der beiden Ereignisse (7,9 m am 30.08.2020 bzw. 8,3 m am 05.10.2021).

Die im vorliegenden Bericht als Einzelereignisse ausgewiesenen Ablösebereiche #2-8 (siehe Tabelle 3, Abbildung 12) befinden sich in der Sturzbahn des Felssturzes vom 05.10.2021 und haben sich daher aller Voraussicht nach durch die direkte mechanische Einwirkung der herabstürzenden Felsmassen gelöst.

Ablösebereich #20 (ID 2021-2022_20) stellt mit einem Volumen von 233 m³ das größte Ereignis außerhalb des direkten Einflussbereichs des großen 23 510 m³-Ereignisses dar. Der Felssturz löste sich in unmittelbarer Nachbarschaft der Wandvereisung aus einem Felsbereich, der erst in den letzten Jahren durch den Gletscherrückgang freigelegt wurde und unterstreicht die hohe Massenbewegungsaktivität in kürzlich ausgeapertem Terrain. In der Umgebung des Observatoriums wurden keine größeren Ereignisse registriert.

Ablösebereich ID	Volumen	Versagenstiefe	Azimuth	Gradient	Oberkante	Unterkante
Abiosebereich Ib	[m ³]	[m]	[°]	[°]	[m üNN]	[m üNN]
2021-2022_01	23 509,9	8,3	54	71	2815,5	2699,0
2021-2022_02	40,8	2,0	62	75	2748,8	2743,9
2021-2022_03	1 041,8	6,1	60	67	2703,4	2673,6
2021-2022_04	114,9	1,9	54	63	2689,8	2682,4
2021-2022_05	127,5	3,0	64	62	2664,7	2653,6
2021-2022_06	33,0	1,8	51	83	2644,5	2639,9
2021-2022_07	18,4	1,8	60	79	2632,6	2628,4
2021-2022_08	133,3	2,1	42	66	2623,1	2609,9
2021-2022_09	7,6	1,1	335	76	3010,9	3007,6
2021-2022_10	10,9	2,2	16	83	3025,1	3018,2
2021-2022_11	16,0	1,1	16	78	2939,8	2933,8
2021-2022_12	9,5	1,3	10	66	2941,3	2937,6
2021-2022_13	6,6	1,1	30	90	3013,9	3010,9
2021-2022_14	2,7	1,0	0	53	2877,1	2875,0
2021-2022_15	5,6	1,2	51	98	3028,4	3026,1
2021-2022_16	10,2	1,2	13	75	2831,7	2827,7
2021-2022_17	5,4	1,2	36	84	3000,8	2995,9
2021-2022_18	3,1	1,1	64	66	2913,1	2910,6
2021-2022_19	4,4	1,1	329	74	2715,9	2713,0
2021-2022_20	233,3	3,3	316	54	2710,5	2695,5
2021-2022_21	7,7	1,0	19	59	2690,0	2686,0

Tabelle 3: Ergebnisse der Differenzanalyse 2021-2022.

Abbildung 12: Im aktuellen Vergleichszeitraum (19.08.2021 bis 25.08.2022) wurden insgesamt 21 Steinschlagbzw. Felssturz-Ablösebereiche detektiert (für Zuordnung und Volumina der Ereignisse siehe Tabelle 1). Geländedarstellung: Punktwolke der UAV-Befliegung vom 25.08.2022

Abbildung 13: Die Ablagerungen des 23 510 m³ großen Felssturzes vom 05.10.2021 kamen erst in unmittelbarer Nähe des Pilatussees zum Stillstand (Horizontale Auslaufweite: 600-700 m). Transportbahn und Felssturzablagerungen sind rot markiert (Foto: Daniel Binder, 25.08.2022).

Abbildung 14: Der Felssturz vom 05.10.2021 (rot, 23 510 m³) löste sich in unmittelbarer Nachbarschaft des Felssturzes vom 30.08.2020 (blau, 15 570 m³) aus dem westlichen Bereich der Nordwand des Rauriser Sonnblicks (Geländedarstellung: Punktwolke der UAV-Befliegung vom 25.08.2022).

Abbildung 11: Die Ablösebereiche der Felsstürze vom 30.08.2020 und 05.10.2021 (rot markiert) heben sich auf Grund ihrer Helligkeit deutlich von der umgebenden Felswand ab (Foto: UAV-Befliegung vom 25.08.2022).

Ablösebereich ID	Volumen [m³]	Versagenstiefe [m]	Azimuth [°]	Gradient [°]	Oberkante [m üNN]	Unterkante [m üNN]
2020-2021_01	34,6	1,5	56	58	2830,7	2823,6
2020-2021_02	9,6	1,2	96	65	2808,0	2804,3
2020-2021_03	12,3	1,3	18	48	2804,9	2802,6
2020-2021_04	390,5	3,7	56	65	2815,5	2786,6
2020-2021_05	49,1	1,8	61	70	2785,5	2774,7
2020-2021_06	113,4	2	59	73	2774,5	2758,6
2020-2021_07	57,7	1,7	69	78	2746,7	2737,5
2020-2021_08	97,8	1,4	49	37	2706,4	2701,7
2020-2021_09	13,9	1	37	58	2676,1	2672,7
2020-2021_10	33,7	1,9	343	86	3020,4	3012,9
2020-2021_11	10,9	1,9	4	58	3024,5	3021,5
2020-2021_12	10,2	1	50	64	3009,4	3005,4
2020-2021_13	7	1,1	90	78	3066,8	3064,1
2020-2021_14	12,6	1,6	350	53	2778,1	2774,4
2020-2021_15	12,3	1,3	26	58	2758,4	2755,9
2020-2021_16	5	1	360	82	3060,5	3057
2020-2021_17	11,4	1,2	20	84	2856,6	2851,1
2020-2021_18	12,5	1,1	322	44	2847,9	2844,4
2020-2021_19	12,1	1,1	47	58	2768,7	2763,4
2020-2021_20	26,7	1,2	13	48	2619,7	2614,9

Tabelle 4: Ergebnisse der Differenzanalyse 2020-2021.

Abbildung 16: Im Vergleichszeitraum (05.09.2020-19.08.2021) identifizierte Steinschlag-/Felssturz-Ablösebereiche (für Zuordnung der Ereignisse siehe Tabelle 1). Geländedarstellung/Hintergrund: BereinigtePunktwolke der UAV-Befliegung vom 19.08.2021.

3.2.2 Kontinuierliche Kluftmessungen – Crackmetermessungen

Im Rahmen der geologisch-geotechnischen Beurteilung des Hohen Sonnblicks im Hinblick auf die Standortsicherheit des Gebäudekomplexes von Dr. Gert Furthmüller entlang von 5 Abseilstrecken (A-E) Klüfte nummeriert und Messungen der Kluftöffnungsweiten durchgeführt. Hierdurch wird eine quantitative Erfassung der Kluftweiten und bei Wiederholung deren Veränderung bestimmt, und folglich eine Beurteilung der Standsicherheit der Seilbahn und des Observatoriums ermöglicht. Basierend auf der Geländebegehung und der daraus resultierenden Dokumentation wurden im September 2021 in Kooperation mit Herrn Dr. Furthmüller erstmalig vier Kluftweitenmessgeber, sogenannte Crackmeter oder Rissdistanzgeber, entlang der Abseilstrecke A (Kluft 7) und E (Kluft 8) installiert. Das Ziel dieser Crackmeter ist es, kontinuierliche Messungen der Öffnungsweiten der Klüfte zu beobachten und den exakten Zeitpunkts des Öffnens festzustellen.

Für die Datenspeicherung und Datenübermittlung wurde in Kooperation mit Mertl Research GmbH ein energieeffizienter Logger-Prototyp entwickelt. Dieser Crackmeter-Logger verfügt neben einer lokalen Datenspeicherung über einen LoRaWAN-Sender, der die Messwerte in naher Echtzeit über das LoRaWAN-Gateway auf der Messterrasse des Observatoriums an den SYBWIEN8 Server in Wien übermittelt.

Spannungsprobleme bei der Energieversorgung der Crackmeterlogger führten Anfang Dezember zu einem weiteren außerplanmäßigen Geländeeinsatz bei dem zu Testzwecken unterschiedliche Batterien in den Crackmeterloggern eingesetzt wurden. An einer weiterführenden Problemlösung wird in Kooperation mit Mertl Research GmbH bereits für das Jahr 2023 gearbeitet.

Erste Ergebnisse der Deformationsmessungen sind in Abbildung 6 dargestellt. Hier zeigt sich vor allem beim Standort NORD-C2 ein Zusammenhang zwischen Lufttemperatur und Öffnen und Schließen der Klüfte, und lässt wasser- bzw. eishaltige Klüfte im oberflächennahen Felsbereich vermuten.

Abbildung 17:. Deformationsmessungen am Crackmeter-Standort C2 und Verlauf der mittleren stündlichen Lufttemperatur.

3.2.3 Seismisches Monitoring SeisRockHT

Ziel ist die Identifikation von Steinschlag- und Felssturzablösebereichen in der Nordwand des Hohen Sonnblicks. Inhaltlich knüpft das Arbeitspaket somit direkt an das Projekt "SeisRockHT", welches durch die ÖAW (Österreichische Akademie der Wissenschaft) im Zeitraum von 2015 bis 2020 finanziert wurde, an.

Die SeisRockHT Projektintiative ist als Startschuss für ein längerfristiges kontinuierliches Monitoring zu verstehen, dass vor allem auf die Erfassung von plötzlich auftretenden gravitativen Massenbewegungen wie Steinschläge, Muren und Lawinen abzielt. Die im Rahmen von SeisRockHT etablierte Monitoringstrategie bildet somit die Basis für die umfassende Beobachtung und Erforschung von Naturgefahren im alpinen Hochgebirge.

Abbildung 13: Das seismische Beobachtungsnetz im Bereich der Sonnblick Nordwand.

Das mit 2020 abgeschlossene Projekt SeisRockHT war eine Kollaboration der ZAMG, Mertl Research GmbH und Georesearch Forschungsgesellschaft mbH. Das Projekt wurde von den ZAMG Fachabteilungen Geophysik und Klimaforschung initiiert und geleitet. Die Projektfinanzierung konnte über das ÖAW Programm "Earth System Sciences" realisiert werden. Der Endbericht zum SeisRockHT ist unter nachstehendem Link zu finden: https://www.researchgate.net/publication/348296686 SeisRockHT Final Report

Die Fortführung der SeisRockHT Projektinitiative wird aktuell von den längerfristig laufenden Projekten GCW-Permafrost und ASBO sichergestellt.

SeisRockHT installierte lokale seismologische Netzwerke um die Steinschlagaktivität der Nordwände am Hohen Sonnblick und am Kitzsteinhorn kontinuierlich zu erfassen. Dabei verfolgte SeisRockHT einen Open-Design Ansatz, im Rahmen dessen der Open-Hardware Datenlogger ,Ruwai^c zum ersten Mal in einem hochalpinen Gelände eingesetzt wurde. Regelmäßige Geländeaufnahmen mittels terrestrischem Laserscanning lieferten aktive Steinschlagzonen und quantifizierten deren akkumulierten Gesamtvolumina. Beide Untersuchungsgebiete bieten eine umfangreiche Palette an Komplementärdaten, die es ermöglichen, Steinschlag-Prozessketten umfassend zu beschreiben.

Da Herr Daniel Binder im Rahmen einer Doktorratsstudium ausschließlich für die Feldarbeiten zur Wartung des seismischen Netzwerkes im Jahr 2022 zur Verfügung stand, werden die Daten erst im Jahr 2023 ausgewertet.

Weitere Analysen und längere Zeitreihen sind allerdings noch notwendig um konkrete Zusammenhänge zwischen z.b. Steinschlagaktivität und der Degradation des Permafrosts im Rahmen der Klimaerwärmung herzustellen.

Abbildung 14: Kumulierte Anzahl detektierter Steinschlagereignis-Kandidaten (rote Linie) mit meteorologischen Komplementärdaten im Herbst 2017. Die grünen Linienverläufe zeigen die Lufttemperatur der Stationen Kolm-Saigurn (oben) und Sonnblick (unten). Eine eindeutige Abnahme der Steinschlagaktivität ist nach einem Temperaturrückgang in der Woche 29. August bis 05. September zu erkennen.

Auf Basis der unterschiedlichen Laufzeiten der seismischen Wellen zu den einzelnen Standorten Netzwerkes ist eine Abschätzung der räumlichen Lage der Aufprallzone möglich. Unterschiedliche Ausbreitungsgeschwindigkeiten eines Steinschlagevents aufzeichnet an zwei Messstandorten sind in nachstehenden Abbildungen dargestellt.

Neben einem kontinuierlichen Steinschlagmonitoring, eröffnet eine ganzjährige Beobachtungsstrategie auch neue Forschungsfelder bei der Detektion von Muren bzw. Lawinen oder aber auch bei extremen Abflussmengen in Folge lokaler Starkregenereignisse wie die folgende Abbildung zeigt.

Abbildung 17: Die Abbildung zeigt die gemessene Hintergrundseismizität in Form eines Spektrogramms. Die schwarze Linie zeigt den gemessenen Abfluss der Hüttwinklache, und die grauen Balkendiagramme die stündlichen Niederschlagsraten. Die Hintergrundseismizität korreliert sehr gut mit dem gemessenen Abfluss.

Literatur

- Besl, P. and McKay, N. (1992): A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), pp.239-256.
- Boeckli L., Brenning A., Gruber S. & Noetzli J. (2012): Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807-820.
- Chen, Y. and Medioni, G. (1992): Object modelling by registration of multiple range images. Image and Vision Computing, 10(3), pp.145-155. Lague, D., Brodu, N., and Leroux, J. (2013): Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing, 82, pp.10-26.
- Haeberli, W. (1975): Untersuchungen zur Verbreitung von Permafrost zwischen Flüelapass und Piz Grialetsch (Graubünden). Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Zürich, 221pp.
- Hartmeyer I., Keuschnig M., Delleske R., Krautblatter M., Lang A., Schrott L., and Otto J.-C. (2020a): Current glacier recession causes significant rockfall increase: the immediate paraglacial response of deglaciating cirque walls. Earth Surface Dynamics, 8, 729-751.
- Hartmeyer I., Delleske R., Keuschnig M., Krautblatter M., Lang A., Schrott L., and Otto J.-C. (2020b): A 6year lidar survey reveals enhanced rockwall retreat and modified rockfall magnitudes/frequencies in deglaciating cirques. Earth Surface Dynamics, 8, 753-768.
- Kellerer-Pirklbauer, A., Bartsch, A., Gitschthaler, C., Reisenhofer S., Weyss, G., Riedl, C., Avian, M. (2015): permAT Langzeitmonitoring von Permafrost und periglazialen Prozessen und ihre Bedeutung für die Prävention von Naturgefahren: Mögliche Strategien für Österreich. Endbericht von StartClim2014.F in StartClim2014: Beiträge zur Umsetzung der österreichischen Anpassungsstrategie, Auftraggeber: BML-FUW, BMWFW, ÖBF, Land Oberösterreich
- Klene, A.E., Nelson, F.E. and N. I. Shiklomanov (2001): The n-factor as a tool in geocryological mapping: seasonal thaw in the Kuparuk River Basin, Alaska. Physical Geography 22: 449–466.
- KRAINER, K. (2007): Permafrost und Naturgefahren in Österreich. Ländlicher Raum (Online-Fachzeitung des Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft). Jahrgang 2007:1-18.
- PERMOS 2016. Permafrost in Switzerland 2010/2011 to 2013/2014. Noetzli, J., Luethi, R., and Staub, B. (eds.), Glaciological Report Permafrost No. 12–15 of the Cryospheric Commission of the Swiss Academy of Sciences, 85 pp.
- PERMOS 2019. Permafrost in Switzerland 2014/2015 to 2017/2018. Noetzli, J., Pellet, C., and Staub, B. (eds.), Glaciological Report (Permafrost) No. 16-19 of the Cryospheric Commission of the Swiss Academy of Sciences, 104 pp, doi:10.13093/permos-rep-2019-16-19.
- Schöner W., Boeckli I., Hausmann H., Otto J., Reisenhofer S., Riedl C. and S. Seren (2012): Spatial Patterns of Permafrost at Hoher Sonnblick (Austrian Alps) - Extensive Field-measurements and Modelling Ap-proaches. Austrian Journal of Earth Science 105
- Reisenhofer, S. und Riedl, C. (2019): Permafrost Monitoring am Hohen Sonnblick Sonnblickgebiet. Sonnblick Observatorium - Wissenschaftliche Aktivitäten 2019, Seite 44. Weblink: <u>https://www.sonnblick.net/ic-orig/InhalteBroschueren/SBO Broschuere-Brochure 2019 FINAL.pdf</u>

Reisenhofer, S. (2019): PERSON – GCW Permafrostmonitoring Sonnblick: Etablierung des Sonnblicks (Hohe Tauern) als Global Crysosphere Watch Supersite. Endbericht. Auftraggeber Bundesministeriums für Nachhaltigkeit und Tourismus Abteilung I/4. Weblink: <u>https://www.sonnblick.net/ic-orig/Benutzerdaten/2014-2018 PERSON-GCW-ENDBERICHT.pdf</u>

Appendix A

Location	Lon [°]	Lat [°]	ELE [m]	Slope [°]	Aspect	Sensor	Substrate	MAGST 2013/14	MAGST 2014/15	MAGST 2015/16	MAGST 2016/17	MAGST 2017/18	WEqt 2013/14	WEqt 2014/15	WEqt 2015/16	WEqt 2016/17	WEqt 2017/18	GFI 2013/14	THI 2013/14	GFI 2014/15	THI 2014/15	GFI 2015/16	THI 2015/16	GFI 2016/17	THI 2016/17	GFI 2017/18	THI 2017/18
w32	12.9979	47.0452	2675	30	northwest	Onset	very coarse debris	-0.4	0.79	0.10	0.65	-0.19	-1.42	-2.81	-1.42	-2.28	-0.96	-220	75	-290	580	-166	202	-198	430	-116	59
w39	12.9967	47.0406	2739	19	northwest	UTL	bedrock	-2.34	-0.72	-1.29	-1.63	-2.58	ND	ND	ND	ND	ND	-591	41	-742	478	-842	371	-981	394	-951	184
w40	12.9946	47.0401	2719	15	northwest	UTL	coarse debris	0.09	0.48	0.25	0.42	-0.03	-1.38	-2.99	-1.2	-2.68	-0.78	-156	190	-304	479	-161	254	-96	171	-105	98
w41	12.9921	47.0409	2685	33	northwest	UTL	debris	-0.88	-1.09	NA	-0.84	-1.44	-2.86	ND	NA	ND	ND	-258	77	-664	335	NA	232	-371	188	-666	239
w42	12.9902	47.0413	2629	26	East	Onset	coarse debris	-0.19	0 .63	-0.28	-1.46	NA	-0.68	-1.18	-2.76	ND	NA	-97	29	-190	419	-359	255	-692	247	NA	NA
w43	12.9894	47.0421	2637	42	north	Onset	bedrock	NA	NA	-0,47	-0.68	-1.61	NA	NA	ND	ND	ND	NA	NA	NA	364	-752	592	-1026	783	-966	488
w45a	12.9902	47.0430	2591	24	northeast	UTL	bedrock	0.25	-0.26	NA	0.42	0.12	-0.82	-2.21	NA	-1.83	-0.75	-156	246	-282	203	NA	126	-263	415	-158	193
w46	12.9902	47.0428	2598	12	northeast	i-button	bedrock	NA	0.4	-1.33	-0.46	-0.75	NA	ND	NA	ND	ND	NA	118	-573	721	-389	140	-849	683	-596	374
w47	12.9931	47.0417	2680	18	west	UTL	organic/debris	-1.09	-0.55	-2.10	3.77	-2.85	ND	ND	ND	NA	ND	-868	476	-972	770	-941	286	-1	209	-1248	402
w48	12.9979	47.0433	2699	22	southwest	i-button	fine-grained material	-0.68	0.46	-0.39	-0.16	-2.03	-3.07	ND	ND	ND	ND	-359	266	-690	856	-506	372	-661	604	-758	156
w49	12.9915	47.0423	2619	27	west	UTL	coarse debris	-0.43	NA	-0.17	0.16	0.08	-0.61	NA	-1.2	-0.97	-0.31	-123	4	NA	292	-191	144	-171	229	-54	77
w50	12.9939	47.0413	2701	21	northwest	UTL	weathered bedrock	-0.53	NA	-0.23	0.45	-0.57	-1.9	-3.24	NA	-2.63	-3.4	-188	81	-422	555	-149	101	-303	465	-389	221
w51	12.9982	47.0432	2704	28	norhtwest	UTL	coarse debris	-0.5	-0.22	-0.54	-0.28	-0.42	-2.21	-3.82	NA	-3.19	-0.96	-314	133	-448	367	-182	95	-390	289	-170	46
w52	12.9979	47.0446	2687	35	north	Onset	coarse debris	-0.22	NA	-1.25	NA	NA	-1.24	NA	NA	NA	NA	-193	123	-6	256	-139	4	NA	NA	NA	NA
w53	12.9976	47.0450	2670	23	west	Onset	coarse debris	-0.33	NA	-0.56	0.09	-0.11	-1.47	NA	-3.42	-4.4	-1.46	-241	135	NA	323	-519	206	-519	549	-235	201
w54	12.9984	47.0437	2706	15	northwest	UTL	coarse debris	-0.22	0.46	0.41	0.42	-0.1	-0.59	-0.75	NA	-1.03	-0.31	-122	43	-129	292	-40	118	-141	290	-71	41
w55	12.9990	47.0451	2701	23	northwest	UTL	very coarse debris	-2.25	NA	-2.99	-1.89	-2.66	ND	NA	ND	ND	ND	-810	84	NA	256	-866	97	-1097	416	-921	132
w56	12.9961	47.0410	2719	14	norht	Onset	debirs	-0.61	NA	-0.95	NA	NA	ND	NA	ND	NA	NA	-696	498	NA	351	-673	378	NA	NA	NA	NA
w57	12.9947	47.0410	2708	6	northwest	Onset	debris/soil	-0.03	-0.13	NA	3.66	1.07	-0.26	-0.53	NA	NA	-0.08	-36	25	-79	39	NA	NA	NA	201	-14	395
w58	12.9916	47.0434	2581	19	northwest	UTL	debris	0.03	0.36	-0.22	0.38	-0.19	-0.51	-0.91	-1.19	-1.67	-0.36	-110	122	-127	444	-179	309	-229	364	-91	35
w59	12.9990	47.0431	2725	22	northwest	UTL	debris	0.01	0.94	0.15	0.23	-0.49	-0.29	-0.74	-1.02	-2.15	-1.43	-36	39	-132	475	-133	184	-252	335	-214	67
w60	12.9998	47.0421	2730	13	west	UTL	debris/bedroc k	NA	NA	NA	3.28	0.55	NA	NA	NA	NA	-0.3	NA	180	-40	235						
w65	12.9902	47.0421	2614	14	northwest	i-button	bedrock 2cm depth	NA	-0,05	0.22	NA	NA	ND	-0.5	-1.0	NA	NA	NA	NA	-227	386	NA	NA	NA	NA	NA	NA
w68	12.9972	47.0428	2691	68	west	i-button	debris	-0.65	0.35	-0.40	-0.15	-0.76	-2.91	ND	ND	ND	-2.73	-468	245	-668	797	-654	510	-731	677	-456	231
w69	12.9972	47.0428	2690	19	northwest	i-button	debris	-0.01	0.9	-0.60	4.3	-0.58	-2.12	ND	-3.1	NA	-2.38	-304	300	-494	824	-403	218	NA	236	-343	170
w70	12.9972	47.0427	2689	13	west	i-button	debris	0.42	1.41	-0.04	0.5	-0.49	-2	ND	-3.05	-4.1	-2.24	-256	408	-414	930	-395	380	-493	672	-354	207
w74	12.9908	47.0418	2622	25	west	i-button	debris	0.2	0.17	NA	3.94	1.35	-0.22	-0.59	NA	NA	0.04	-52	120	-100	153	NA	NA	NA	217	-8	487
w75	12.9924	47.0410	2676	17	northwest	i-button	debris	0.46	0.33	NA	0.98	NA	-0.2	-0.95	NA	-0.58	NA	-26	182	-127	226	0	226	-68	367	NA	NA
w76	12.9952	47.0402	2717	19	northwest	i-button	debris	-0.39	NA	NA	3.23	-0.09	-2.16	NA	NA	NA	-1.68	-212	94	NA	NA	NA	NA	0	177	-207	181

 Tabelle 3: Zusammenfassung der GST-Standorte im Untersuchungsgebiet Wintergasse f

 Wintergasse f

 Zusammenfassung: Permafrost wahrscheinlich; gelbe Markierung: Permafrost